Publications by authors named "Yunnan Liu"

Regular exercise maintains a healthy metabolic profile, while the underlying mechanisms have not been fully elucidated. Extracellular vesicles serve as an important mediator in intercellular communication. In this study, we aimed to explore whether exercise-induced extracellular vesicles (EVs) of skeletal muscle origins contribute to exercise-related protective effects on metabolism.

View Article and Find Full Text PDF

Prostate cancer (PCa) responds poorly to routine immunotherapy due to the tumor immunosuppressive microenvironment. Here, we describe an ultrasound-based drug delivery strategy to stimulate potent anti-tumor immunity via exosomes encapsulated with sonosensitizers Chlorin e6 (Ce6) and immune adjuvant R848, namely Exo. Exo was constructed by simple co-incubation of Ce6 and R848 with HEK 293T cell-derived exosomes.

View Article and Find Full Text PDF
Article Synopsis
  • The study developed a drug delivery system using exosomes with a switchable stealth coat designed to avoid being recognized and taken up by non-target cells, while allowing for controlled drug release at targeted sites.
  • They engineered the exosomes to carry Chlorin e6 (Ce6) and Bone morphogenetic protein 7 (Bmp7) mRNA, proving that they could effectively deliver these substances to specific tissues in obese mice.
  • The results demonstrated that the SmartExo platform enhanced targeted delivery and reduced side effects, showing promising potential for safer and more effective drug therapies.
View Article and Find Full Text PDF

Arterial stiffness due to the vessel remodeling is closely linked to raised blood pressure, and its physiopathologic mechanism is still not fully understood. We here aimed to explore whether extracellular vesicle (EV) mediated intercellular communication between endothelium and smooth muscle cell contribute to the blood vessel remodeling under hypertension. We here revealed that the arterial endothelial cells robustly secreted EV, which in turn could be circulated and/or directly taken up by the subendothelial smooth muscle cells (SMC).

View Article and Find Full Text PDF

Exposure to acute transition from negative (-Gz) to positive (+ Gz) gravity significantly impairs cerebral perfusion in pilots of high-performance aircraft during push-pull maneuver. This push-pull effect may raise the risk for loss of vision or consciousness. The aim of the present study was to explore effective countermeasures against cerebral hypoperfusion induced by the push-pull effect.

View Article and Find Full Text PDF

Adipose tissue functions importantly in the bodily homeostasis and systemic metabolism, while obesity links to multiple disorders. Beyond the canonical hormones, growth factors and cytokines, exosomes have been identified to play important roles in transmission of information from adipose tissue to other organs. Exosomes are nanoscale membrane vesicles secreted by donor cells, and transfer the genetic information to the recipient cells where the encapsulated nucleic acids and proteins are released.

View Article and Find Full Text PDF

Exosomes are nanosized lipid vesicles originating from the endosomal system that carry many macromolecules from their parental cells and play important roles in intercellular communication. The functions and underlying mechanisms of exosomes in atherosclerosis have recently been intensively studied. In this review, we briefly introduce exosome biology and then focus on advances in the roles of exosomes in atherosclerosis, specifically exosomal changes associated with atherosclerosis, their cellular origins and potential functional cargos, and their detailed impacts on recipient cells.

View Article and Find Full Text PDF

Introduction: There is a strong association between gestational obesity and fetal cardiac dysfunction, while the exact mechanisms remain largely unknown. The purpose of this study was to investigate the role of exosomes from maternal visceral adipose tissue in abnormal embryonic development in obese pregnancy.

Methods: Female C57BL/6J obese mice were induced by a high-fat diet (containing 60% fat).

View Article and Find Full Text PDF

Familial hypercholesterolemia (FH), with high LDL (low-density lipoprotein) cholesterol levels, is due to inherited mutations in genes, such as low-density lipoprotein receptor (LDLR). Development of therapeutic strategies for FH, which causes atherosclerosis and cardiovascular disease, is urgently needed. Mice with low-density lipoprotein receptor deletion ( mice) were used as an FH model.

View Article and Find Full Text PDF

Key Points: Rapid alterations of gravitational stress during high-performance aircraft push-pull manoeuvres induce dramatic shifts in volume and pressure within the circulation system, which may result in loss of consciousness due to the rapid and significant reduction in cerebral perfusion. There are still no specific and effective countermeasures so far. We found that lower body negative pressure (LBNP), applied prior to and during -Gz and released at the subsequent transition to +Gz, could effectively counteract gravitational haemodynamic stress induced by a simulated push-pull manoeuvre and improve cerebral diastolic perfusion in human subjects.

View Article and Find Full Text PDF