Publications by authors named "Yunna Guo"

Ammonium-ion hybrid supercapacitors (AIHSCs) have gained extensive attention due to their high safety and environmental friendliness. Manganese oxides are among the most promising cathode materials; however, the side electrochemical reactions occurring in aqueous electrolytes limit their reversible capacities and energy densities. This work prepares the β-/γ-MnO electrode and reveals the side electrochemical reactions occurring in the (NH)SO electrolyte.

View Article and Find Full Text PDF

Restricting the growth of sodium (Na) dendrites at the atomic level is the premise to enable both the stability and safety of sodium metal batteries (SMBs). Here, the universal synthesis of the fourth main group element (Sn, Ge, Pb) as single metal atoms anchored on graphene (Sn, Ge, Pb SAs/G) with sp hybridization for dendrite-free sodium metal anode is reported. The in situ real-time observation of Na growth on Sn SAs/G uncoils a kinetically uniform planar deposition at the atomic level for substantially suppressing the dendrite growth.

View Article and Find Full Text PDF

Manganese dioxide (α-MnO) has attracted significant research interest in supercapacitors recently. However, the reaction mechanism of α-MnO in supercapacitors remains unclear. Therefore, a nano-supercapacitor using Environmental transmission electron microscopy (ETEM) is conducted and investigated the reaction mechanism of α-MnO based on three ionic liquids (ILs).

View Article and Find Full Text PDF

Transition metal sulfides (TMSs) are considered as promising anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities. However, the relatively low electrical conductivity, large volume variation, and easy aggregation/pulverization of active materials seriously hinder their practical application. Herein, okra-like NiS/FeS particles encapsulated in multichannel N-doped carbon nanofibers (NiS/FeS@MCNFs) are fabricated by a coprecipitation, electrospinning, and carbonization/sulfurization strategy.

View Article and Find Full Text PDF

Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stability. Herein, we introduce an "atomic size misfit" strategy to modulate active sites, and report a facile synthesis of a Pb-doped Cu catalyst with numerous atomic Pb-concentrated grain boundaries.

View Article and Find Full Text PDF

Cu-based nanocatalysts are the cornerstone of various industrial catalytic processes. Synergistically strengthening the catalytic stability and activity of Cu-based nanocatalysts is an ongoing challenge. Herein, the high-entropy principle is applied to modify the structure of Cu-based nanocatalysts, and a PVP templated method is invented for generally synthesizing six-eleven dissimilar elements as high-entropy two-dimensional (2D) materials.

View Article and Find Full Text PDF

Metals fluorides (MFs) are potential conversion cathodes to replace commercial intercalation cathodes. However, the application of MFs is impeded by their poor electronic/ionic conductivity and severe decomposition of electrolyte. Here, a composite cathode of FeF and polymer-derived carbon (FeF @PDC) with excellent cycling performance is reported.

View Article and Find Full Text PDF

Clarifying the stress signal transduction pathway would be helpful for understanding the abiotic stress resistance mechanism in apple (Malus × domestica Borkh.) and could assist in the development of new varieties with high stress tolerance by genetic engineering. The key NAC transcription factor SND1, which is involved in the lignin biosynthesis process in apple, was functionally analyzed.

View Article and Find Full Text PDF

To expand the cultivation area of apple (Malus×domestica Borkh.) and select resistant varieties by genetic engineering, it is necessary to clarify the mechanism of salt and osmotic stress tolerance in apple. The MdMYB46 transcription factor was identified, and the stress treatment test of MdMYB46-overexpressing and MdMYB46-RNAi apple lines indicated that MdMYB46 could enhance the salt and osmotic stress tolerance in apple.

View Article and Find Full Text PDF

Taking tomato 'Zhongza 105' as test material, the influences of sodium naphthalene acetate (SNA) on growth and physiological characteristics of tomato seedlings under suboptimal temperature and light condition were investigated. The results showed that the dry mass, vigorous seedling index, root activity, total nitrogen content, net photosynthesis rate (Pn) of tomato seedlings were significantly decreased by suboptimum temperature and light treatment. In addition, the catalase activity and zeatin riboside (ZR) concentration were also reduced.

View Article and Find Full Text PDF