Plant Biotechnol J
November 2024
Soil salinity has negative impacts on food security and sustainable agriculture. Ion homeostasis, osmotic adjustment and reactive oxygen species scavenging are the main approaches utilized by rice to resist salt stress. Breeding rice cultivars with high salt tolerance (ST) and yield is a significant challenge due to the lack of elite alleles conferring ST.
View Article and Find Full Text PDFIn higher plants, mature male gametophytes have distinct apertures. After pollination, pollen grains germinate, and a pollen tube grows from the aperture to deliver sperm cells to the embryo sac, completing fertilization. In rice, the pollen aperture has a single-pore structure with a collar-like annulus and a plug-like operculum.
View Article and Find Full Text PDFN-Methyladenosine (mA) is one of the most abundant modifications of eukaryotic mRNA, but its comprehensive biological functionality remains further exploration. In this study, we identified and characterized a new flowering-promoting gene, EARLY HEADING DATE6 (EHD6), in rice. EHD6 encodes an RNA recognition motif (RRM)-containing RNA binding protein that is localized in the non-membranous cytoplasm ribonucleoprotein (RNP) granules and can bind both mA-modified RNA and unmodified RNA indiscriminately.
View Article and Find Full Text PDFBreakdown of reproductive isolation facilitates flow of useful trait genes into crop plants from their wild relatives. Hybrid sterility, a major form of reproductive isolation exists between cultivated rice (Oryza sativa) and wild rice (O. meridionalis, Mer).
View Article and Find Full Text PDFHeading date (or flowering time) is a key agronomic trait that affects seasonal and regional adaption of rice cultivars. An unoptimized heading date can either not achieve a high yield or has a high risk of encountering abiotic stresses. There is a strong demand on the mild to moderate adjusting the heading date in breeding practice.
View Article and Find Full Text PDFHybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive.
View Article and Find Full Text PDFPlants (Basel)
January 2023
The formation and development of chloroplasts play a vital role in the breeding of high-yield rice ( L.). Porphobilinogen deaminases (PBGDs) act in the early stage of chlorophyll and heme biosynthesis.
View Article and Find Full Text PDFN-methyladenosine (mA) is the most widely distributed and most abundant type of mRNA modification in eukaryotic. It provides a posttranscriptional level regulation of gene expression by regulating pre-mRNA splicing, mRNA degradation, or mRNA translational efficiency etc. The function of mA modification is decoded by binding proteins that can specially bind to mA.
View Article and Find Full Text PDFMost of the reported P-type pentatricopeptide repeat (PPR) proteins play roles in organelle RNA stabilization and splicing. However, P-type PPRs involved in both RNA splicing and editing have rarely been reported, and their underlying mechanism remains largely unknown. Here, we report a rice floury endosperm22 (flo22) mutant with delayed amyloplast development in endosperm cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2022
Carbohydrate partitioning between the source and sink tissues plays an important role in regulating plant growth and development. However, the molecular mechanisms regulating this process remain poorly understood. In this study, we show that elevated auxin levels in the rice mutant cause increased accumulation of sucrose in the photosynthetic leaves but reduced sucrose content in the reproductive organs (particularly in the lodicules, anthers, and ovaries), leading to closed spikelets, indehiscent anthers, and parthenocarpic seeds.
View Article and Find Full Text PDFGrain size is a key agronomic trait that determines the yield in plants. Regulation of grain size by brassinosteroids (BRs) in rice has been widely reported. However, the relationship between the BR signaling pathway and grain size still requires further study.
View Article and Find Full Text PDFPlastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast developmental status and is essential for the photoautotrophic lifestyle of plants. Previous studies have established that tetrapyrrole biosynthesis (TPB) and plastid gene expression (PGE) play essential roles in plastid retrograde signaling during early chloroplast biogenesis; however, their functional relationship remains unknown. In this study, we generated a series of rice TPB-related gun (genome uncoupled) mutants and systematically analyzed their effects on nuclear and plastid gene expression under normal conditions or when subjected to treatments with norflurazon (NF; a noncompetitive inhibitor of carotenoid biosynthesis) and/or lincomycin (Lin; a specific inhibitor of plastid translation).
View Article and Find Full Text PDFSalt stress is one of the major environmental factors limiting plant growth and development. Although microtubule (MT) organization is known to be involved in response to salt stress, few tubulin genes have been identified that confer salt insensitivity in plants. In this study, we identified a MT encoding gene, OsTUB1, that increased the survival rate of rice plants under salt stress by stabilizing MT organization and ion transporters.
View Article and Find Full Text PDFExcessive nitrogen fertilizer application is harmful to the environment and reduces the quality of cereal crops. Maintaining crop yields under low nitrogen (LN) conditions and improving quality are important goals for cereal crop breeding. Although the effects of nitrogen assimilation on crop nitrogen-use efficiency (NUE) have been intensively studied, natural variations of the key assimilation genes underlying grain development and quality are largely unclear.
View Article and Find Full Text PDFStarch accounts for over 80% of the total dry weight in cereal endosperm and determines the kernel texture and nutritional quality. Amyloplasts, terminally differentiated plastids, are responsible for starch biosynthesis and storage. We screened a series of rice mutants with floury endosperm to clarify the mechanism underlying amyloplast development and starch synthesis.
View Article and Find Full Text PDFBackground: The sequences of several important mitochondrion-encoded genes involved in respiration in higher plants are interrupted by introns. Many nuclear-encoded factors are involved in splicing these introns, but the mechanisms underlying this splicing remain unknown.
Results: We isolated and characterized a rice mutant named floury shrunken endosperm 5 (fse5).
KEY MESSAGE: we identified a functional chromogen gene C from wild rice, providing a new insight of anthocyanin biosynthesis pathway in indica and japonica. Accumulation of anthocyanin is a desirable trait to be selected in rice domestication, but the molecular mechanism of anthocyanin biosynthesis in rice remains largely unknown. In this study, a novel allele of chromogen gene C, OrC1, from Oryza rufipongon was cloned and identified as a determinant regulator of anthocyanin biosynthesis.
View Article and Find Full Text PDFA series of nucleotide sugar interconversion enzymes (NSEs) generate the activated sugar donors required for biosynthesis of cell wall matrix polysaccharides and glycoproteins. UDP-glucose 4-epimerases (UGEs) are NSEs that function in the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). The roles of UDP-glucose 4-epimerases in monocots remain unclear due to redundancy in the pathways.
View Article and Find Full Text PDFThioredoxins (TRXs) occur in plant chloroplasts as complex disulphide oxidoreductases. Although many biological processes are regulated by thioredoxins, the regulatory mechanism of chloroplast TRXs are largely unknown. Here we report a rice white panicle2 mutant caused by a mutation in the thioredoxin z gene, an orthologue of AtTRX z in Arabidopsis.
View Article and Find Full Text PDF