Publications by authors named "Yunling Luo"

High levels of acetyl-CoA are considered a key metabolic feature of metastatic cancers. However, the impacts of acetyl-CoA metabolic accumulation on cancer microenvironment remodeling are poorly understood. In this study, using human hepatocellular carcinoma (HCC) tissues and orthotopic xenograft models, we found a close association between high acetyl-CoA levels in HCCs, increased infiltration of tumor-associated neutrophils (TANs) in the cancer microenvironment and HCC metastasis.

View Article and Find Full Text PDF

Background: Liver hepatocellular carcinoma (LIHC) is a solid primary malignancy with poor prognosis. This study discovered key prognostic genes based on T cell exhaustion and used them to develop a prognostic prediction model for LIHC.

Methods: SingleR's annotations combined with Seurat was used to automatically annotate the single-cell clustering results of the LIHC dataset GSE166635 downloaded from the Gene Expression Omnibus (GEO) database and to identify clusters related to exhausted T cells.

View Article and Find Full Text PDF

Interleukin-6 (IL-6), an important inflammatory cytokine, is a key factor regulating cancer metastasis. Cancer cells can modulate their tumorigenic abilities by sorting specific microRNAs (miRNAs) as exosomes into the tumor microenvironment. The relationship between IL-6 and exosomal miRNAs related to hepatocellular carcinoma (HCC) metastasis remains to be elucidated.

View Article and Find Full Text PDF

Background: Since December, 2019, an outbreak of coronavirus disease 2019 (COVID-19) has spread globally. Little is known about the epidemiological and clinical features of paediatric patients with COVID-19.

Methods: We retrospectively retrieved data for paediatric patients (aged 0-16 years) with confirmed COVID-19 from electronic medical records in three hospitals in Zhejiang, China.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are developing nanomedicinal strategies to fight tumors but have not fully addressed the potential side effects of these treatments.
  • A zebrafish xenograft model was created to study tumor growth and heart function simultaneously after administering different drug formulations.
  • The study found that a new DOX-loaded nanocomposite reduced heart damage from the chemotherapy drug doxorubicin while still effectively inhibiting tumor growth, suggesting a promising assessment system for safer cancer treatments.
View Article and Find Full Text PDF

We synthesized a biothiol-sensitive nanoprobe by assembling gold nanoparticles with a novel redox-responsive silica (ReSi) matrix using dithiobis (succinimidyl propionate) and (3-aminopropyl) trimethoxysilane. Thin layer disulfide-bonded networks of the ReSi could differentially respond to extra- and intracellular glutathione in cancer cells within 30 min; furthermore, targeted cellular uptake could be monitored in situ by fluorescence recovery. Sigmoidal dose-response pattern of the nanoprobes presented in this study were attributed to the buried disulfide-linked 3D nanostructure of the ReSi nanoshell, optimized at an appropriate thickness, enabling not only buffering of small redox disturbances in the extracellular milieu but also the satisfied sensitivity for rapid redox sensing.

View Article and Find Full Text PDF

Photodynamic therapy, that is, excitation of a photosensitizer with light to generate reactive oxygen species such as singlet oxygen, has emerged as a noninvasive technique for cancer theranostics. However, the clinical use of many photosensitizers is impeded by their hydrophobicity, the nonspecific damage they cause to normal tissues, and their susceptibility to environmental degradation. In this study, we developed a simple electrostatic adsorption strategy to fabricate aptamer-silica nanocomposites by sequentially functionalizing nanocomposites with the cell surface-associated mucin 1 aptamer for tumor targeting and a hydrophilic photosensitizer, methylene blue, for photodynamic therapy applications.

View Article and Find Full Text PDF

Background: Endoplasmic reticulum (ER) stress-induced podocyte apoptosis plays a critical role in the development of diabetic nephropathy (DN). Here, we tested the hypothesis that suppression of PERK-ATF4-CHOP pathway by Astragaloside IV (AS-IV) is associated with inhibition of ER stress-induced podocyte apoptosis in streptozotocin (STZ)-induced diabetic rats.

Methods: Diabetic rats were treated with AS-IV at 5 and 10 mg·kg-1·d-1, p.

View Article and Find Full Text PDF

An optimized regeneration and Agrobacterium-mediated transformation protocol based on whole cotyledonary node explants was developed in soybean (Glycine max) cultivar Zhong Huang 13. Adding 6-benzylaminopurine (BAP) in a germinating medium could significantly increase regeneration efficiency; the optimal BAP concentration for shoot formation was 0.5 mg/L.

View Article and Find Full Text PDF

Podocyte loss and dysfunction play key role during the development of diabetic nephropathy (DN). The aim of this study was to observe the protective effects of astragaloside IV on podocyte in diabetic rats and explore its mechanisms preliminary. Healthy male Sprague-Dawley (SD) rats were randomized into normal control group, diabetic nephropathy group and diabetic nephropathy with AS-IV treatment group.

View Article and Find Full Text PDF

The rapid development in nanomaterials has brought great opportunities to cancer theranostics, which aims to combine diagnostics and therapy for cancer treatment and thereby improve the healthcare of patients. In this review we focus on the recent progress of several cancer theranostic strategies using mesoporous silica nanoparticles and carbon-based nanomaterials. Silicon and carbon are both group IV elements; they have been the most abundant and significant non-metallic substances in human life.

View Article and Find Full Text PDF

Tumor therapy requires multi-functional treatment strategies with specific targeting of therapeutics to reduce general toxicity and increase efficacy. In this study we fabricated and functionally tested aptamer-conjugated and doxorubicin (DOX)-loaded acoustic droplets comprising cores of liquid perfluoropentane compound and lipid-based shell materials. Conjugation of sgc8c aptamers provided the ability to specifically target CCRF-CEM cells for both imaging and therapy.

View Article and Find Full Text PDF

Chemotherapy is an important modality in cancer treatment. The major challenges of recent works are to improve drug loading, increase selectivity to target cells, and control the precise release of drugs. In the present study, we devised a smart drug carrier, an aptamer/hairpin DNA-gold nanoparticle (apt/hp-Au NP) conjugate for targeted delivery of drugs.

View Article and Find Full Text PDF