Publications by authors named "Yunkun Qian"

Eutrophication leads to various environmental issues, including pollution caused by the production of algal organic matter (AOM). Algae typically respond to environmental changes (e.g.

View Article and Find Full Text PDF

Dichloroacetonitrile (DCAN) is an emerging disinfection by-product (DBP) that is widespread in drinking water. However, the pathway for DCAN formation from aromatic amino acids remains unclear, leading to a lack of an understanding of its explicit fate during chloramination. In this study, we investigated the specific formation mechanism of DCAN during the chloramination of phenylalanine based on reaction kinetics and chemical thermodynamics.

View Article and Find Full Text PDF

A pressing issue in contemporary society is the resource scarcity of phosphorus. Operating on the principle of electrochemical reactions between Mg as the anode and oxygen from air as the cathode, Mg-air batteries (MAB) have been employed to provide new prospects for phosphorus recovery in struvite form. Different phosphorus concentrations and reaction time impact struvite generation in MAB systems; however, the exact mechanism has rarely been investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Algal organic matter (AOM) can disrupt disinfection processes by consuming disinfectants and leading to harmful disinfection by-products (DBPs) formation.
  • Investigations showed that the characteristics of DBPs varied based on the type of organic matter (extracellular vs. intracellular) and the treatment methods used, like chlorination and powdered activated carbon (PAC) treatment.
  • Fluorescence analysis was effective in predicting DBP formation potential from AOM, highlighting the importance of understanding AOM to assess environmental risks and improve water treatment processes.
View Article and Find Full Text PDF

Developing efficient and economical technologies for drinking water disinfection remains a challenge. We synthesized Ag/AgBr/LDH doped with various silver mass concentrations and explored its ability to inactivate E. coli under visible light irradiation (λ ≥ 400 nm).

View Article and Find Full Text PDF

Organic matter reacts with chlorine forming disinfection byproducts (DBPs) including trihalomethanes (THMs), haloacetamides (HAMs), haloacetic acids (HAAs), and haloacetonitriles (HANs). Filter backwash water (FBW) is either released back to the environment or recycled to the head of the treatment plant after solids settling and the remaining dissolved organic matter is a significant pool of DBP precursors that are not well understood. We characterized dissolved organic matter in FBW from 10 treatment plants and low molecular weight (MW < 1 kDa) organic matter contributed the most to DBP formation.

View Article and Find Full Text PDF

Chloroacetonitriles (CANs) are highly toxic nitrogenous disinfection by-products (N-DBPs), which frequently appear in water supply systems and have attracted widespread attention. UV/persulfate (PS) is an effective method to degrade CANs. Bromide (Br) is widespread in aquatic environments and reacts with oxidative radicals to produce secondary reactive bromine species (RBS), which affects the degradation of CANs by UV/PS.

View Article and Find Full Text PDF

Drug chirality is attracting increasing attention because the enantiomers of the same chiral pharmaceutical usually exhibit different biological activities, metabolic pathways, and toxicities. The ubiquitous presence of microplastics (MPs) can enrich organic pollutants commonly found in the environment. However, knowledge about the enrichment of pharmaceutical enantiomers to MPs is relatively limited.

View Article and Find Full Text PDF

Chromium and humic acid often co-exist in wastewater and source waters, and the removal of chromium through sorption by activated carbon may be greatly influenced by humic acid. In this study, we systematically evaluated concurrent adsorption of humic acid (HA) and hexavalent chromium (Cr(VI)) in water by powdered activated carbon (PAC) and further, the effect on conversion to trivalent chromium (Cr(III)). Adsorption of both HA and Cr(VI) was significantly enhanced in the dual adsorbate system as compared to treatments with HA or Cr(VI) alone.

View Article and Find Full Text PDF

Photocatalysis has emerged as an environmentally friendly approach for microbial disinfection. The development of visible-light-driven (VLD) photocatalysts for water pollution remediation is imperative, considering that visible light constitutes a substantial fraction of the solar spectrum. The modification of photocatalysts by Ag/AgX (X = Cl, Br, I) deposition can be used to improve photocatalytic efficiencies.

View Article and Find Full Text PDF

Drinking water treatment plants (DWTPs) produce filter backwash water (FBW) and sedimentation sludge water (SSW) that may be partially recycled to the head of DWTPs. The impacts of key disinfection conditions, water quality parameters (e.g.

View Article and Find Full Text PDF

Although the influence of environmental factors on the microbial community in water sources is crucial, it is seldom evaluated. The seasonal relationship between microbial diversity of bacteria and fungi and environmental factors was investigated in a large drinking-water reservoir using Illumina MiSeq sequencing. Forty-one bacterial phyla and nine fungal phyla were analyzed in the Qingcaosha Reservoir, Shanghai, China.

View Article and Find Full Text PDF

Haloacetonitriles (HANs) and haloacetamides (HAMs) are nitrogenous disinfection byproducts that are present in filter backwash water (FBW) and sedimentation sludge water (SSW). In many cases FBW and SSW are recycled to the head of drinking water treatment plants. HAN and HAM concentrations in FBW and SSW, without additional oxidants, ranged from 6.

View Article and Find Full Text PDF

An alternate anaerobic/anoxic-aerobic double membrane bioreactors process (AN-DMBR) was proposed to improve denitrifying phosphorus removal efficiency. The system was operated for 70 d under different nitrogen/phosphorus (N/P) ratios with synthetic wastewater to present the performance evaluation of nutrients removal and microbial community structure in the AN-DMBR process. The results showed that when the influent total phosphorus (TP) was 6.

View Article and Find Full Text PDF

A lab-scale anaerobic-anoxic-aerobic membrane bioreactor (ANO-MBR) fed with synthetic wastewater was operated to investigate the impact of influent carbon and nitrogen volumetric loading rate (VLR) on dephosphatation, and the corresponding influent concentration was 100-300 mg L (COD), 24-50 mg L (NH-N) and 4.8-6.0 mg L (TP), respectively.

View Article and Find Full Text PDF