Publications by authors named "Yunkin V"

A coherent X-ray beam expander based on a multilens interferometer is proposed in this paper. The multilens interferometer allows efficient generation of a highly diverging coherent beam up to several milliradians in the hard X-ray energy range. The optical properties of the interferometer were experimentally demonstrated at the ESRF ID13 undulator beamline (Grenoble, France), using 12.

View Article and Find Full Text PDF
Article Synopsis
  • A phase-sensitive X-ray imaging method using a bilens interferometer has been developed for high-resolution imaging.
  • The technique involves scanning a sample positioned in front of one lens in the interferometer and measuring changes in the interference pattern with a high-resolution detector.
  • Experimental tests on fibers of various sizes confirm the method's effectiveness, yielding consistent results with theoretical predictions and highlighting potential applications and future enhancements.
View Article and Find Full Text PDF

We demonstrate that ion-beam lithography can be applied to the fabrication of rotationally parabolic refractive diamond X-ray micro-lenses that are of interest to the field of high-resolution X-ray focusing and microscopy. Three single half-lenses with curvature radii of 4.8 µm were produced and stacked to form a compound refractive lens, which provided diffraction-limited focusing of X-ray radiation at the P14 beamline of PETRA-III (DESY).

View Article and Find Full Text PDF
Article Synopsis
  • Full-field X-ray imaging and microscopy were successfully performed using polymer compound refractive nano-lenses, achieving a resolution of 100 nm at the European Synchrotron's beamline ID13.
  • The lenses maintained functionality after exposure to an absorbed dose of approximately 10 Gy, indicating their durability under X-ray radiation.
  • The article addresses challenges such as lens aberrations and astigmatism while exploring potential improvements to enhance lens performance in nano-focusing and compact X-ray microscopy applications.
View Article and Find Full Text PDF

The present work demonstrates the potential applicability of additive manufacturing to X-Ray refractive nano-lenses. A compound refractive lens with a radius of 5 µm was produced by the two-photon polymerization induced lithography. It was successfully tested at the X-ray microfocus laboratory source and a focal spot of 5 μm was measured.

View Article and Find Full Text PDF

Linear parabolic diamond refractive lenses are presented, designed to withstand high thermal and radiation loads coming from upgraded accelerator X-ray sources. Lenses were manufactured by picosecond laser treatment of a high-quality single-crystal synthetic diamond. Twelve lenses with radius of curvature at parabola apex R = 200 µm, geometrical aperture A = 900 µm and length L = 1.

View Article and Find Full Text PDF

A novel high-energy multi-lens interferometer consisting of 30 arrays of planar compound refractive lenses is reported. Under coherent illumination each lens array creates a diffraction-limited secondary source. Overlapping such coherent beams produces an interference pattern demonstrating strong longitudinal functional dependence.

View Article and Find Full Text PDF

We report a novel hard x-ray interferometer consisting of two parallel channels manufactured in a single Si crystal by means of microfabrication technology. The sidewall surfaces of the channels, similar to mirrors, scatter at very small incident angles, acting equivalently to narrow micrometer size slits as in the Young double-slit interferometer. Experimental tests of the interferometer were performed at the ESRF ID06 beamline in the energy range from 12 to 16 keV.

View Article and Find Full Text PDF

For the first time, single-crystal diamond planar refractive lenses have been fabricated by laser micromachining in 300 µm-thick diamond plates which were grown by chemical vapour deposition. Linear lenses with apertures up to 1 mm and parabola apex radii up to 500 µm were manufactured and tested at the ESRF ID06 beamline. The large acceptance of these lenses allows them to be used as beam-conditioning elements.

View Article and Find Full Text PDF

We report a multilens X-ray interferometer consisting of six parallel arrays of planar compound refractive lenses, each of which creates a diffraction limited beam under coherent illumination. Overlapping such coherent beams produces an interference pattern demonstrating substantially strong longitudinal functional dependence. The interference fringe pattern produced by multilens interferometer was described by Talbot imaging formalism.

View Article and Find Full Text PDF

We report a novel type of x-ray interferometer employing a bilens system consisting of two parallel compound refractive lenses, each of which creates a diffraction limited beam under coherent illumination. By closely overlapping such coherent beams, an interference field with a fringe spacing ranging from tens of nanometers to tens of micrometers is produced. In an experiment performed with 12 keV x rays, submicron fringes were observed by scanning and moiré imaging of the test grid.

View Article and Find Full Text PDF

A two-step focusing set-up combining a Fresnel zone plate with an ellipsoidal capillary is presented. It is shown that, in addition to the anticipated gain in flux, the employment of the prefocusing micro-optic makes optimal use of the elliptical shape of the capillary by almost eliminating aberrations. A small cross section of the prefocused beam allows a tiny fraction of the capillary surface to be selected, thus reducing the influence of slope errors.

View Article and Find Full Text PDF

A single-bounce capillary with an ellipsoidal shape has been used for two-step focusing in combination with a Fresnel zone plate (FZP). The FZP serves as a first microfocusing element and produces a demagnified micrometer image of the source, before the elliptical capillary makes a last final compression of the beam. With 15 keV X-rays from the European Synchrotron Radiation Facility BM5 bending magnet, the two-step demagnification system produced a focus of about 250 nm with a gain of more than 1000.

View Article and Find Full Text PDF

The effects appearing in a crystal microstructuring by reactive ion etching on diffraction properties of Bragg-Fresnel lenses were studied. Possible deviations of the real zone structures from ideal ones were considered. The influence of the Fresnel zone displacements due to sidewall undercutting effects and due to a mask erosion was analyzed.

View Article and Find Full Text PDF