Publications by authors named "Yunjun Guo"

With a simple structure and control method, the piezo-inertia actuator is a preferred embodiment in the field of microprecision industry. However, most of the previously reported actuators are unable to achieve a high speed, high resolution, and low deviation between positive and reverse velocities at the same time. To achieve a high speed, high resolution, and low deviation, in this paper we present a compact piezo-inertia actuator with a double rocker-type flexure hinge mechanism.

View Article and Find Full Text PDF

Nanosized spinel ferrites MFeO (M = Mn, Co, Ni, Cu, Zn)-coated flaky FeSiAl alloy composites were synthesized successfully. Nano-ferrites preferentially grow into nanoplatelets due to induced or restricted growth on the flaky surface of FeSiAl. With annealing temperature increasing, the ferrites' nanosheets thicken gradually and then grow into irregular particles.

View Article and Find Full Text PDF

Epidermal growth-factor receptor (EGFR) is overexpressed in a wide variety of solid tumors and has served as a well-characterized target for cancer imaging and therapy. Cetuximab was the first mAb targeting EGFR approved by the FDA for the treatment of metastatic colorectal and head and neck cancers. Previous studies showed that (64)Cu (T1/2 = 12.

View Article and Find Full Text PDF

Owing to its cytotoxicity, free copper is chelated by protein side chains and does not exist in vivo. Several chaperones transport copper to various cell compartments, but none have been identified that traffic copper to the nucleus. Copper-64 decays by β (+) and β (-) emission, allowing positron emission tomography and targeted radionuclide therapy for cancer.

View Article and Find Full Text PDF

Unlabelled: Radioimmunotherapy has been successfully used in the treatment of lymphoma but thus far has not demonstrated significant efficacy in humans beyond disease stabilization in solid tumors. Radioimmunotherapy with (64)Cu was highly effective in a hamster model of colorectal cancer, but targeted radiotherapies with this radionuclide have since not shown as much success. It is widely known that mutations in key proteins play a role in the success or failure of cancer therapies.

View Article and Find Full Text PDF

Labeling nanoparticles with radionuclides has been widely used to form multifunctional and multivalency agents for various biomedical applications. A variety of nanostructures including inorganic, organic and lipid nanoparticles have been labeled with positron or gamma emitting radioisotopes through versatile radiochemistry in a number of disease models to track their in vivo fate, image biomarkers, and monitor treatment response. This review briefly summarizes the recent applications of nanoparticles labeled with radionuclides for oncological, cardiovascular, and pulmonary theranostics.

View Article and Find Full Text PDF

Somatostatin receptors (SSTr) are overexpressed in a wide range of neuroendocrine tumors, making them excellent targets for nuclear imaging and therapy, and radiolabeled somatostatin analogues have been investigated for positron emission tomography imaging and radionuclide therapy of SSTr-positive tumors, especially of the subtype-2 (SSTr2). The aim of this study was to develop a somatostatin analogue, Tyr(3)-octreotate (Y3-TATE), conjugated to a novel cross-bridged macrocyclic chelator, 11-carboxymethyl-1,4,8,11-tetraazabicyclo[6.6.

View Article and Find Full Text PDF