Genomics Proteomics Bioinformatics
October 2024
Cancer progression involves the gradual loss of a differentiated phenotype and the acquisition of progenitor and stem cell-like features, which are potential culprits of immunotherapy resistance. Although the state-of-the-art predictive computational methods have facilitated the prediction of cancer stemness, there remains a lack of efficient resources to accommodate various usage requirements. Here, we present the Cancer Stemness Online, an integrated resource for efficiently scoring cancer stemness potential at both bulk and single-cell levels.
View Article and Find Full Text PDFThe typical genomic feature of acute myeloid leukemia (AML) M3 subtype is the fusion event of PML/RARα, and ATRA/ATO-based combination therapy is current standard treatment regimen for M3 subtype. Here, a machine-learning model based on expressions of PML/RARα targets was developed to identify M3 patients by analyzing 1228 AML patients. Our model exhibited high accuracy.
View Article and Find Full Text PDFCommunications between tumor cells and surrounding immune cells help shape the tumor immunity continuum. Recent breakthroughs in high-throughput technologies as well as computational algorithms had reported many important tumor-immune cell (TIC) communications, which were scattered in thousands of published studies and impeded systematical characterization of the TIC communications across cancer. Here, a comprehensive database, TICCom, was developed to model TIC communications, containing 739 experimentally-validated or manually-curated interactions collected from more than 3,000 literatures as well as 4,537,709 predicted interactions inferred via six computational algorithms by reanalyzing 32 scRNA-seq datasets and bulk RNA-seq data across 25 cancer types.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) can crosstalk with each other by post-transcriptionally co-regulating genes involved in the same or similar functions; however, the regulatory principles and biological insights in tumor-immune are still unclear. Here, we show a multiple-step model to identify lncRNA-lncRNA immune cooperation based on co-regulating functional modules by integrating multi-omics data across 20 cancer types. Moreover, lncRNA immune cooperative networks (LICNs) are constructed, which are likely to modulate tumor-immune microenvironment by regulating immune-related functions.
View Article and Find Full Text PDFSingle-cell transcriptome has enabled the transcriptional profiling of thousands of immune cells in complex tissues and cancers. However, subtle transcriptomic differences in immune cell subpopulations and the high dimensionality of transcriptomic data make the clustering and annotation of immune cells challenging. Herein, we introduce ImmCluster (http://bio-bigdata.
View Article and Find Full Text PDFBackground: Long noncoding RNAs (lncRNAs) are emerging as critical regulatory elements and play fundamental roles in the biology of various cancers. However, we are still lack of knowledge about their expression patterns and functions in human colorectal cancer (CRC).
Methods: Differentially expressed lncRNAs in CRC were identified by bioinformatics screen and the level of MIR22HG in CRC and control tissues were determined by qRT-PCR.
Accumulating evidence has demonstrated that transcriptional regulation is affected by DNA methylation. Understanding the perturbation of DNA methylation-mediated regulation between transcriptional factors (TFs) and targets is crucial for human diseases. However, the global landscape of DNA methylation-mediated transcriptional dysregulation (DMTD) across cancers has not been portrayed.
View Article and Find Full Text PDFBrief Bioinform
September 2019
Cooperative regulation among multiple microRNAs (miRNAs) is a complex type of posttranscriptional regulation in human; however, the global view of the system-level regulatory principles across cancers is still unclear. Here, we investigated miRNA-miRNA cooperative regulatory landscape across 18 cancer types and summarized the regulatory principles of miRNAs. The miRNA-miRNA cooperative pan-cancer network exhibited a scale-free and modular architecture.
View Article and Find Full Text PDF