Water quality parameters (WQP) are the most intuitive indicators of the environmental quality of water body. Due to the complexity and variability of the chemical environment of water body, simple and rapid detection of multiple parameters of water quality becomes a difficult task. In this paper, spectral images (named SPIs) and deep learning (DL) techniques were combined to construct an intelligent method for WQP detection.
View Article and Find Full Text PDFThe study of complex mixtures is very important for exploring the evolution of natural phenomena, but the complexity of the mixtures greatly increases the difficulty of material information extraction. Image perception-based machine-learning techniques have the ability to cope with this problem in a data-driven way. Herein, we report a 2D-spectral imaging method to collect matter information from mixture components, and the obtained feature images can be easily provided to deep convolutional neural networks (CNNs) for establishing a spectral network.
View Article and Find Full Text PDFDetermination of complex pollutants often involves many high-cost and laborious operations. Today's pop machine-learning (ML) technology has exhibited their amazing successes in image recognition, drug designing, disease detection, natural language understanding, etc. ML-driven samples testing will inevitably promote the development of related subjects and fields, but the biggest challenge ahead for this process is how to provide some intelligible and sufficient data for various algorithms.
View Article and Find Full Text PDFDue to the complexity of nonlinear reactions, the analysis of environmental samples often relies on expensive equipment as well as tedious and time-consuming experimental procedures. Currently, the efficient machine learning (ML) strategy based on big data offers some new insights for the analysis of complex components in the environmental field. In this study, ML was applied for the analysis of total organic carbon (TOC).
View Article and Find Full Text PDFChem Commun (Camb)
January 2020
A machine learning (ML) strategy based on color-spectral images for mixed amino acid (AA) analysis is presented. The results showed that a well-trained ML model could accurately predict multiple AAs at the same time, suggesting its value for facilitating quantitative analysis of mixed AA systems.
View Article and Find Full Text PDF