Publications by authors named "Yunjie Tong"

Intracranial cardiac impulse propagation along penetrating arterioles is vital for both nutrient supply via blood circulation and waste clearance via CSF circulation. However, current neuroimaging methods are limited to simultaneously detecting impulse propagation at pial arteries, arterioles, and between them. We hypothesized that this propagation could be detected via paravascular CSF dynamics and that it may change with aging.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) captures rich physiological and neuronal information, offering insight into neurofluid dynamics, vascular health and waste clearance. Accurate cerebral vessel segmentation could greatly facilitate fluid dynamics research in fMRI. However, existing vessel identification methods, such as magnetic resonance angiography or deep-learning-based segmentation on structural MRI, cannot reliably locate cerebral vessels in fMRI space due to misregistration from inherent fMRI distortions.

View Article and Find Full Text PDF

Background: Cardiac pulsation propels blood through the cerebrovascular network to maintain cerebral homeostasis. The cerebrovascular network is uniquely surrounded by paravascular cerebrospinal fluid (pCSF), which plays a crucial role in waste removal, and its flow is suspected to be driven by arterial pulsations. Despite its importance, the relationship between vascular and paravascular fluid dynamics throughout the cardiac cycle remains poorly understood in humans.

View Article and Find Full Text PDF

We present a pipeline to quantify biomechanical environment of the brain using solely MRI-derived data in order to elucidate the role of biomechanical factors in neurodegenerative disorders. Neurological disorders, like Alzheimer's and Parkinson's diseases, are associated with physical changes, including the accumulation of amyloid-β and tau proteins, damage to the cerebral vasculature, hypertension, atrophy of the cortical gray matter, and lesions of the periventricular white matter. Alterations in the external mechanical environment of cells can trigger pathological processes, and it is known that AD causes reduced stiffness in the brain tissue during degeneration.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) captures rich physiological and neuronal information that can offer insights into neurofluid dynamics, vascular health, and waste clearance function. The availability of cerebral vessel segmentation could facilitate fluid dynamics research in fMRI. However, without magnetic resonance angiography scans, cerebral vessel segmentation is challenging and time-consuming.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on measuring cerebrospinal fluid (CSF) velocity in real time to better understand the glymphatic system's role in neurodegenerative diseases like Alzheimer's and Parkinson's.
  • Current imaging methods struggle with accurately capturing slow CSF movements, prompting this research to develop a new way to quantify CSF flow using functional MRI (fMRI).
  • The results showed a successful nonlinear relationship between CSF flow and fMRI signals, indicating that this novel method can provide deeper insights into CSF dynamics and its potential impact on brain health.
View Article and Find Full Text PDF

Sickle cell disease (SCD) is a genetic disorder causing painful and unpredictable Vaso-occlusive crises (VOCs) through blood vessel blockages. In this study, we propose explosive synchronization (ES) as a novel approach to comprehend the hypersensitivity and occurrence of VOCs in the SCD brain network. We hypothesized that the accumulated disruptions in the brain network induced by SCD might lead to strengthened ES and hypersensitivity.

View Article and Find Full Text PDF

The brain relies on an effective clearance mechanism to remove metabolic waste products for the maintenance of homeostasis. Recent studies have focused on elucidating the forces that drive the motion of cerebrospinal fluid (CSF), responsible for removal of these waste products. We demonstrate that vascular responses evoked using controlled manipulations of partial pressure of carbon dioxide (PaCO) levels, serve as an endogenous driver of CSF clearance from the brain.

View Article and Find Full Text PDF

In recent years, low-frequency oscillations (LFOs) (0.01-0.1 Hz) have been a subject of interest in resting-state functional magnetic resonance imaging research.

View Article and Find Full Text PDF

estimation of cerebrospinal fluid (CSF) velocity is crucial for understanding the glymphatic system and its potential role in neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Current cardiac or respiratory gated approaches, such as 4D flow MRI, cannot capture CSF movement in real time due to limited temporal resolution and in addition deteriorate in accuracy at low fluid velocities. Other techniques like real-time PC-MRI or time-spatial labeling inversion pulse are not limited by temporal averaging but have limited availability even in research settings.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is a genetic disorder causing blood vessel blockages and painful Vaso-occlusive crises (VOCs). VOCs, characterized by severe pain due to blocked blood flow, are recurrent and unpredictable, posing challenges for preventive strategies. In this study we propose explosive synchronization (ES), a phenomenon characterized by abrupt brain network phase transitions, as a novel approach to address this challenge.

View Article and Find Full Text PDF

Paravascular cerebrospinal fluid (pCSF) surrounding the cerebral arteries within the glymphatic system is pulsatile and moves in synchrony with the pressure waves of the vessel wall. Whether such pulsatile pCSF can infer pulse wave propagation-a property tightly related to arterial stiffness-is unknown and has never been explored. Our recently developed imaging technique, dynamic diffusion-weighted imaging (dynDWI), captures the pulsatile pCSF dynamics in vivo and can explore this question.

View Article and Find Full Text PDF

Background: In clinical populations, the movement of cerebrospinal fluid (CSF) during sleep is a growing area of research with potential mechanistic connections in both neurodegenerative (e.g., Alzheimer's Disease) and neurodevelopmental disorders.

View Article and Find Full Text PDF

General anesthesia is an indispensable procedure in clinical practice. Anesthetic drugs induce dramatic changes in neuronal activity and cerebral metabolism. However, the age-related changes in neurophysiology and hemodynamics during general anesthesia remain unclear.

View Article and Find Full Text PDF

Hyperspectral imaging acquires data in both the spatial and frequency domains to offer abundant physical or biological information. However, conventional hyperspectral imaging has intrinsic limitations of bulky instruments, slow data acquisition rate, and spatiospectral trade-off. Here we introduce hyperspectral learning for snapshot hyperspectral imaging in which sampled hyperspectral data in a small subarea are incorporated into a learning algorithm to recover the hypercube.

View Article and Find Full Text PDF

Blood arrival time and blood transit time are useful metrics in characterizing hemodynamic behaviors in the brain. Functional magnetic resonance imaging in combination with a hypercapnic challenge has been proposed as a non-invasive imaging tool to determine blood arrival time and replace dynamic susceptibility contrast (DSC) magnetic resonance imaging, a current gold-standard imaging tool with the downsides of invasiveness and limited repeatability. Using a hypercapnic challenge, blood arrival times can be computed by cross-correlating the administered CO signal with the fMRI signal, which increases during elevated CO due to vasodilation.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) movement through the pathways within the central nervous system is of high significance for maintaining normal brain health and function. Low frequency hemodynamics and respiration have been shown to drive CSF in humans independently. Here, we hypothesize that CSF movement may be driven simultaneously (and in synchrony) by both mechanisms and study their independent and coupled effects on CSF movement using novel neck fMRI scans.

View Article and Find Full Text PDF

This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) in the paravascular spaces of the surface arteries (sPVS) is a vital pathway in brain waste clearance. Arterial pulsations may be the driving force of the paravascular flow, but its pulsatile pattern remains poorly characterized, and no clinically practical method for measuring its dynamics in the human brain is available. In this work, we introduce an imaging and quantification framework for in-vivo non-invasive assessment of pulsatile fluid dynamics in the sPVS.

View Article and Find Full Text PDF

Brain complexity analysis using functional near-infrared spectroscopy (fNIRS) has attracted attention as a biomarker for evaluating brain development and degeneration processes. However, most methods have focused on the temporal scale without capturing the spatial complexity. In this study, we propose a spatial time-delay entropy (STDE) method as the spatial complexity measure based on the time-delay measure between two oxy-hemoglobin (Δ[HbO]) or two deoxy-hemoglobin (Δ[Hb]) oscillations within the 0.

View Article and Find Full Text PDF

It is commonly believed that cerebrospinal fluid (CSF) movement is facilitated by blood vessel wall movements (i.e., hemodynamic oscillations) in the brain.

View Article and Find Full Text PDF

Objective: This study aims to understand the neural and hemodynamic responses during general anesthesia in order to develop a comprehensive multimodal anesthesia depth monitor using simultaneous functional Near Infrared Spectroscopy (fNIRS) and Electroencephalogram (EEG).

Methods: 37 adults and 17 children were monitored with simultaneous fNIRS and EEG, during the complete general anesthesia process. The coupling of fNIRS signals with neuronal signals (EEG) was calculated.

View Article and Find Full Text PDF

Spinal cord injuries cause great damage to the central nervous system as well as the peripheral vasculature. While treatments for spinal cord injury typically focus on the spine itself, improvements in the function of the peripheral vasculature after spinal cord injury have shown to improve overall neurological recovery. This study focused on the use of near-infrared spectroscopy (NIRS) as a mode to monitor cerebral and peripheral vascular condition non-invasively during the recovery process.

View Article and Find Full Text PDF

A "carpet plot" is a 2-dimensional plot (time vs. voxel) of scaled fMRI voxel intensity values. Low frequency oscillations (LFOs) can be successfully identified from BOLD fMRI and used to study characteristics of neuronal and physiological activity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkb79oiboa9t284jgp2blh5ho9c9tf1nv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once