Self-assembly monolayer (SAM) hole transporters, consisting of anchoring, spacer, and terminal groups, have played a significant role in the development of inverted perovskite solar cells (PSCs). However, the weak interaction between perovskite and hydrophobic terminal group of SAMs limits surface wettability and interface stability. To address this issue, two novel hole transporters (named DBPP and Poly-DBPP) with centrosymmetric biphosphonic acid groups are developed.
View Article and Find Full Text PDFThe difluorobenzothiadizole (ffBT) unit is one of the most classic electron-accepting building blocks used to construct D-A copolymers for applications in organic solar cells (OSCs). Historically, ffBT-based polymers have achieved record power conversion efficiencies (PCEs) in fullerene-based OSCs owing to their strong temperature-dependent aggregation (TDA) characteristics. However, their excessive miscibility and rapid aggregation kinetics during film formation have hindered their performance with state-of-the-art non-fullerene acceptors (NFAs).
View Article and Find Full Text PDFCurrent high-efficiency organic solar cells (OSCs) are generally fabricated in an inert atmosphere that limits their real-world scalable manufacturing, while the efficiencies of air-processed OSCs lag far behind. The impacts of ambient factors on solar cell fabrication remain unclear. In this work, the effects of ambient factors on cell fabrication are systematically investigated, and it is unveiled that the oxidation and doping of organic light absorbers are the dominant reasons causing cell degradation when fabricated in air.
View Article and Find Full Text PDFOrganic semiconductors (e.g., PCBM and IDIC) frequently serve as interface passivants for perovskite solar cells (PSCs) due to their beneficial passivation effects on perovskite interfaces.
View Article and Find Full Text PDF