Publications by authors named "Yunjia Wu"

A carbonate intercalated magnesium aluminum layered double hydroxide is used as an anode material for lithium-ion batteries, displaying a maximum discharge specific capacity of 814 mA h g at 200 mA g in this work through utilizing the valence variation of Mg and the conversion between LiOH and LiH/LiO.

View Article and Find Full Text PDF

Aqueous chloride-ion batteries (ACIBs) with environmental friendliness and high safety hold great potential to fulfill the green energy demand for ocean desalination. Herein, for the first time, a composite consisting of Cl-intercalated CoFe layered double hydroxides (CoFe-Cl-LDH) cross-linked with CNTs (CoFe-Cl-LDH/CNT) is synthesized and demonstrated to be a novel high-performance anode for ACIBs in a neutral NaCl aqueous solution. While exhibiting a high initial capacity of ∼190 mAh g at 200 mA g, CoFe-Cl-LDH/CNT is capable of delivering a reversible capacity of ∼125 mAh g after 200 cycles.

View Article and Find Full Text PDF

Layered double hydroxides (LDHs) have been intensively investigated as promising cathodes for the new concept chloride ion battery (CIB) with multiple advantages of high theoretical energy density, abundant raw materials and unique dendrite-free characteristics. However, driven by the great compositional diversity, a complete understanding of interactions between metal cations, as well as a synergetic effect between metal cations and lattice oxygen on LDH host layers in terms of the reversible Cl-storage capability, is still a crucial but elusive issue. In this work, we synthesized a series of chloride-inserted trinary Mo-doped NiCo-Cl LDH ( = 0, 0.

View Article and Find Full Text PDF

Chloride-ion batteries (CIBs) have drawn growing attention in large-scale energy storage applications owing to their comprehensive merits of high theoretical energy density, dendrite-free characteristic, and abundance of chloride-containing materials. Nonetheless, cathodes for CIBs are plagued by distinct volume effect and sluggish Cl diffusion kinetics, leading to inferior rate capability and short cycling life. Herein, an unconventional Ni Ti-Cl LDH is reported with a high nickel ratio as a cathode material for CIB.

View Article and Find Full Text PDF

Transition-metal compounds (oxides, sulfides, hydroxides, etc.) as lithium-ion battery (LIB) anodes usually show extraordinary capacity larger than the theoretical value due to the transformation of LiOH into LiO/LiH. However, there has rarely been a report relaying the transformation of LiOH into LiO/LiH as the main reaction for LIBs, due to the strong alkalinity of LiOH leading to battery deterioration.

View Article and Find Full Text PDF

A fluoride-ion battery (FIB) is a novel type of energy storage system that has a higher volumetric energy density and low cost. However, the high working temperature (>150 °C) and unsatisfactory cycling performance of cathode materials are not favorable for their practical application. Herein, fluoride ion-intercalated CoFe layered double hydroxide (LDH) (CoFe-F LDH) was prepared by a facile co-precipitation approach combined with ion-exchange.

View Article and Find Full Text PDF