Publications by authors named "Yunjia Qu"

Glioblastoma (GBM) presents a significant therapeutic challenge due to the limited efficacy of existing treatments. Chimeric antigen receptor (CAR) T-cell therapy offers promise, but its potential in solid tumors like GBM is undermined by the physical barrier posed by the extracellular matrix (ECM). To address the inadequacies of traditional 2D cell culture, animal models, and Matrigel-based 3D culture in mimicking the mechanical characteristics of tumor tissues, we employed biomaterials and digital light processing-based 3D bioprinting to fabricate biomimetic tumor models with finely tunable ECM stiffness independent of ECM composition.

View Article and Find Full Text PDF

Glioma, with its heterogeneous microenvironments and genetic subtypes, presents substantial challenges for treatment prediction and development. We integrated 3D bioprinting and multi-algorithm machine learning as a novel approach to enhance the assessment and understanding of glioma treatment responses and microenvironment characteristics. The bioprinted patient-derived glioma tissues successfully recapitulated molecular properties and drug responses of native tumors.

View Article and Find Full Text PDF

Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, microfluidic chips capable of measuring single-cell mechanics via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory.

View Article and Find Full Text PDF

Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, 4 microfluidic chips capable of measuring single-cell mechanics of hFOBs via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory.

View Article and Find Full Text PDF

A primary challenge of high-throughput imaging flow cytometry (IFC) is to analyze the vast amount of imaging data, especially in applications where ground truth labels are unavailable or hard to obtain. We present an unsupervised deep embedding algorithm, the Deep Convolutional Autoencoder-based Clustering (DCAEC) model, to cluster label-free IFC images without any prior knowledge of input labels. The DCAEC model first encodes the input images into the latent representations and then clusters based on the latent representations.

View Article and Find Full Text PDF

Chimeric Antigen Receptor T cell (CAR-T) therapy has emerged as a transformative therapeutic strategy for hematological malignancies. However, its efficacy in treating solid tumors remains limited. An in-depth and comprehensive understanding of CAR-T cell signaling pathways and the ability to track CAR-T cell biodistribution and activation in real-time within the tumor microenvironment will be instrumental in designing the next generation of CAR-T cells for solid tumor therapy.

View Article and Find Full Text PDF
Article Synopsis
  • *Key obstacles include insufficient tracking of T cells, the complexity of the tumor microenvironment (TME), and T cell exhaustion, which hinder effective treatment.
  • *The review will explore the interactions between CAR-T cells and the TME, examine current strategies to overcome these issues, and suggest future directions for improving CAR-T cell efficacy in solid tumors.
View Article and Find Full Text PDF