Publications by authors named "Yuniu Zhang"

Organic solar cells (OSCs) based on polymer donor and non-fullerene acceptor achieve power conversion efficiency (PCE) more than 19% but their poor absorption below 550 nm restricts the harvesting of high-energy photons. In contrast, wide bandgap all-inorganic perovskites limit the absorption of low-energy photons and cause serious below bandgap loss. Therefore, a 2-terminal (2T) monolithic perovskite/organic tandem solar cell (TSC) incorporating wide bandgap CsPbI Br is demonstrated as front cell absorber and organic PM6:Y6 blend as rear cell absorber, to extend the absorption of OSCs into high-energy photon region.

View Article and Find Full Text PDF

There is little question that the "electronic revolution" of the 20th century has impacted almost every aspect of human life. However, the emergence of solid-state electronics as a ubiquitous feature of an advanced modern society is posing new challenges such as the management of electronic waste (e-waste) that will remain through the 21st century. In addition to developing strategies to manage such e-waste, further challenges can be identified concerning the conservation and recycling of scarce elements, reducing the use of toxic materials and solvents in electronics processing, and lowering energy usage during fabrication methods.

View Article and Find Full Text PDF

For organic-inorganic perovskite to be considered as the most promising materials for light emitting diodes and solar cell applications, the active materials must be proven to be stable under various conditions, such as ambient environment, heat and electrical bias. Understanding the degradation process in organic-inorganic perovskite light emitting diodes (PeLEDs) is important to improve the stability and the performance of the device. We revealed that electrical bias can greatly influence the luminance and external quantum efficiency of PeLEDs.

View Article and Find Full Text PDF