SAAP-148, a derivative of LL-37, exhibits a well-defined amphipathic structure and enhanced antimicrobial activity; however, it also displays significant cytotoxicity towards human cells. In this study, we employed Lys-scan to produce a series of amphiphilic SAAP-148 analogs derived from the SAAP-148 sequence to investigate the impact of the distribution of positively charged residues on the biological viability of the antimicrobial peptides (AMPs). The physical properties and biological activity of the designed peptides were subsequently compared.
View Article and Find Full Text PDFMotivation: Mutations in protein-protein interactions can affect the corresponding complexes, impacting function and potentially leading to disease. Given the abundance of membrane proteins, it is crucial to assess the impact of mutations on the binding affinity of these proteins. Although several methods exist to predict the binding free energy change due to mutations in protein-protein complexes, most require structural information of the protein complex and are primarily trained on the SKEMPI database, which is composed mainly of soluble proteins.
View Article and Find Full Text PDFNucleosomes represent elementary building units of eukaryotic chromosomes and consist of DNA wrapped around a histone octamer flanked by linker DNA segments. Nucleosomes are central in epigenetic pathways and their genomic positioning is associated with regulation of gene expression, DNA replication, DNA methylation and DNA repair, among other functions. Building on prior discoveries that DNA sequences noticeably affect nucleosome positioning, our objective is to identify nucleosome positions and related features across entire genome.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) represent a promising antibiotic alternative to overcome drug-resistant bacteria by inserting into the membrane of bacteria, resulting in cell lysis. However, therapeutic applications of AMPs have been hindered by their ability to lyse eukaryotic cells. GF-17 is a truncated peptide of LL-37, which has perfect amphipathicity and a higher hydrophobicity, resulting in higher haemolytic activity.
View Article and Find Full Text PDFNucleosomes represent hubs in chromatin organization and gene regulation and interact with a plethora of chromatin factors through different modes. In addition, alterations in histone proteins such as cancer mutations and post-translational modifications have profound effects on histone/nucleosome interactions. To elucidate the principles of histone interactions and the effects of those alterations, we developed histone interactomes for comprehensive mapping of histone-histone interactions (HHIs), histone-DNA interactions (HDIs), histone-partner interactions (HPIs) and DNA-partner interactions (DPIs) of 37 organisms, which contains a total of 3808 HPIs from 2544 binding proteins and 339 HHIs, 100 HDIs and 142 DPIs across 110 histone variants.
View Article and Find Full Text PDFWrapping of DNA into nucleosomes restricts accessibility to DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, initiate local chromatin opening, and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding, and regulation remain unknown.
View Article and Find Full Text PDFDrosophila Ncd proteins are motor proteins that play important roles in spindle organization. Ncd and the tubulin dimer are highly charged. Thus, it is crucial to investigate Ncd-tubulin dimer interactions in the presence of ions, especially ions that are bound or restricted at the Ncd-tubulin dimer binding interfaces.
View Article and Find Full Text PDFWrapping of DNA into nucleosomes restricts accessibility to the DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, may initiate local chromatin opening and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding and regulation remain unknown.
View Article and Find Full Text PDFSaudi J Gastroenterol
December 2022
Background: Intestinal metaplasia (IM) of the gastric cardia is an important premalignant lesion. However, there is limited information concerning its epidemiological and molecular features. Herein, we aimed to provide an overview of the epidemiological data for gastric cardiac IM and evaluate the role of EYA transcriptional coactivator and phosphatase 4 (EYA4) as an epigenetic biomarker for gastric cardiac IM.
View Article and Find Full Text PDFSulfotransferases (SULTs) are Phase II drug-metabolizing enzymes (DMEs) catalyzing the sulfation of a variety of endogenous compounds, natural products, and drugs. Various drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDS) can inhibit SULTs, affecting drug-drug interactions. Several polymorphisms have been identified for SULTs that might be crucial for interindividual variability in drug response and toxicity or for increased disease risk.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2022
DNA methylation plays a vital role in epigenetic regulation in both plants and animals, and typically occurs at the 5-carbon position of the cytosine pyrimidine ring within the CpG dinucleotide steps. Cytosine methylation can alter DNA's geometry, mechanical and physico-chemical properties - thus influencing the molecular signaling events vital for transcription, replication and chromatin remodeling. Despite the profound effect cytosine methylation can have on DNA, the underlying atomistic mechanisms remain enigmatic.
View Article and Find Full Text PDFBioremediation, which has several advantages over traditional methods, represents an alternative means of dealing with heavy metal pollution. We screened for microorganisms showing heavy metal tolerance in polluted mangrove soils. A novel yeast, Geotrichum sp.
View Article and Find Full Text PDFNucleic Acids Res
February 2022
Cytosine methylation at the 5-carbon position is an essential DNA epigenetic mark in many eukaryotic organisms. Although countless structural and functional studies of cytosine methylation have been reported, our understanding of how it influences the nucleosome assembly, structure, and dynamics remains obscure. Here, we investigate the effects of cytosine methylation at CpG sites on nucleosome dynamics and stability.
View Article and Find Full Text PDFThe aim of this study was to investigate the chemical space and interactions of natural compounds with sulfotransferases (SULTs) using ligand- and structure-based in silico methods. An in-house library of natural ligands (hormones, neurotransmitters, plant-derived compounds and their metabolites) reported to interact with SULTs was created. Their chemical structures and properties were compared to those of compounds of non-natural (synthetic) origin, known to interact with SULTs.
View Article and Find Full Text PDFLittle is known about the roles of histone tails in modulating nucleosomal DNA accessibility and its recognition by other macromolecules. Here we generate extensive atomic level conformational ensembles of histone tails in the context of the full nucleosome, totaling 65 microseconds of molecular dynamics simulations. We observe rapid conformational transitions between tail bound and unbound states, and characterize kinetic and thermodynamic properties of histone tail-DNA interactions.
View Article and Find Full Text PDFMotivation: Mutations that alter protein-DNA interactions may be pathogenic and cause diseases. Therefore, it is extremely important to quantify the effect of mutations on protein-DNA binding free energy to reveal the molecular origin of diseases and to assist the development of treatments. Although several methods that predict the change of protein-DNA binding affinity upon mutations in the binding protein were developed, the effect of DNA mutations was not considered yet.
View Article and Find Full Text PDFEssential E3 ubiquitin ligase HUWE1 (HECT, UBA, and WWE domain containing 1) regulates key factors, such as p53. Although mutations in cause heterogenous neurodevelopmental X-linked intellectual disabilities (XLIDs), the disease mechanisms common to these syndromes remain unknown. In this work, we identify p53 signaling as the central process altered in HUWE1-promoted XLID syndromes.
View Article and Find Full Text PDFHere, we present the data of human histone interactomes generated and analysed in the research article by Peng et al., 2020 [1]. The histone interactome data provide a comprehensive mapping of human histone/nucleosome interaction networks by using different data sources from the structural, chemical cross-linking, and high-throughput studies.
View Article and Find Full Text PDFHistone tails, representing the N-terminal or C-terminal regions flanking the histone core, play essential roles in chromatin signaling networks. Intrinsic disorder of histone tails and their propensity for post-translational modifications allow them to serve as hubs in coordination of epigenetic processes within the nucleosomal context. Deposition of histone variants with distinct histone tail properties further enriches histone tails' repertoire in epigenetic signaling.
View Article and Find Full Text PDFTo elucidate the properties of human histone interactions on the large scale, we perform a comprehensive mapping of human histone interaction networks by using data from structural, chemical cross-linking and various high-throughput studies. Histone interactomes derived from different data sources show limited overlap and complement each other. It inspires us to integrate these data into the combined histone global interaction network which includes 5308 proteins and 10,330 interactions.
View Article and Find Full Text PDFIntellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic.
View Article and Find Full Text PDFObjective: Split-hand/foot malformation (SHFM) is a rare, often debilitating, congenital limb malformation. A single nucleotide polymorphism within the leucine zipper containing kinase AZK () gene was recently associated with SHFM in two consanguineous Pakistani pedigrees. We hypothesized that additional unrelated patients with the phenotype may carry a pathogenic mutation in .
View Article and Find Full Text PDFInt J Mol Sci
September 2019
This study suggests that two newly discovered variants in the gene, which codes for a DNA mismatch repair (MMR) protein, can be associated with a high risk of breast cancer. While variants in the MSH2 gene are known to be linked with an elevated cancer risk, the MSH2 gene is not a part of the standard kit for testing patients for elevated breast cancer risk. Here we used the results of genetic testing of women diagnosed with breast cancer, but who did not have variants in and genes.
View Article and Find Full Text PDFHere we report a novel approach, the DelPhiForce Molecular Dynamics (DFMD) method, for steered molecular dynamics simulations to model receptor-ligand association involving charged species. The main purpose of developing DFMD is to simulate ligand's trajectory toward the receptor and thus to predict the "entrance" of the binding pocket and conformational changes associated with the binding. We demonstrate that the DFMD is superior compared with molecular dynamics simulations applying standard cut-offs, provides correct binding forces, allows for modeling the ligand approach at long distances and thus guides the ligand toward the correct binding spot, and it is very fast (frequently the binding is completed in <1 ns).
View Article and Find Full Text PDFElectrostatic potential, energies, and forces affect virtually any process in molecular biology, however, computing these quantities is a difficult task due to irregularly shaped macromolecules and the presence of water. Here, we report a new edition of the popular software package DelPhi along with describing its functionalities. The new DelPhi is a C++ object-oriented package supporting various levels of multiprocessing and memory distribution.
View Article and Find Full Text PDF