Broad-spectrum antiviral platforms are always desired but still lack the ability to cope with the threats to global public health. Herein, we develop a poly aptamer encoded DNA nanocatcher platform that can trap entire virus particles to inhibit infection with a broad antiviral spectrum. Ultralong single-stranded DNA (ssDNA) containing repeated aptamers was synthesized as the scaffold of a nanocatcher via a biocatalytic process, wherein mineralization of magnesium pyrophosphate on the ssDNA could occur and consequently lead to the formation of nanocatcher with interfacial nanocaves decorated with virus-binding aptamers.
View Article and Find Full Text PDFThe global spread of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the continuously emerging new variants underscore an urgent need for effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). Here, we screened several FDA-approved amphiphilic drugs and determined that sertraline (SRT) exhibits potent antiviral activity against infection of SARS-CoV-2 pseudovirus (PsV) and authentic virus . It effectively inhibits SARS-CoV-2 spike (S)-mediated cell-cell fusion.
View Article and Find Full Text PDFMultidrug resistance (MDR) in cancer cells is a substantial limitation to the success of chemotherapy. The spatio-temporal controlled gene-chemo therapeutics strategy is expected to surmount the limitation of MDR. We herein develop a DNA nanocomplex to achieve intrinsic stimuli-responsive spatio-temporal controlled gene-chemo drug delivery, overcoming MDR of cancer cells.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2022
Deoxyribonucleic acid (DNA) has been an emerging building block to construct functional biomaterials. Due to their programmable sequences and rich responsiveness, DNA has attracted rising attention in the construction of intelligent nanomaterials with predicable nanostructure and adjustable functions, which has shown great potential in drug delivery. On the one hand, the DNA sequences with molecule recognition, responsiveness, and therapeutic efficacy can be easily integrated to the framework of DNA nanomaterials by sequence designing; on the other hand, the rich chemical groups on DNA molecules provide binding points for other functional units.
View Article and Find Full Text PDFObjective: Mitochondrial aconitase (ACO2) is an essential enzyme that bridges the TCA cycle and lipid metabolism. However, its role in cancer development remains to be elucidated. The metabolic subtype of colorectal cancer (CRC) was recently established.
View Article and Find Full Text PDFLipidomics is a significant way to understand the structural and functional roles that lipids play in biological systems. Although many mass spectrometry (MS)-based lipidomics strategies have recently achieve remarkable results, in vivo, in situ, and microscale lipidomics for small biological organisms and cells have not yet been obtained. In this article, we report a novel lipidomics methodology for in vivo, in situ, and microscale investigation of small biological organisms and cells using biocompatible surface-coated probe nanoelectrospray ionization mass spectrometry (BSCP-nanoESI-MS).
View Article and Find Full Text PDF