Background: Human papilloma virus (HPV) affects both males and females, but in South Korea, vaccination rates for boys are significantly lower due to cultural stigma and limited awareness. Effective strategies are needed to close this gap.
Methods: This study evaluated a 6-week smartphone-based HPV prevention program for mothers of school-aged boys, designed using the extended theory of planned behavior (E-TPB).
ACS Appl Mater Interfaces
December 2022
Band-edge modulation of halide perovskites as photoabsorbers plays significant roles in the application of photovoltaic and photochemical systems. Here, Lewis acidity of dopants (M) as the new descriptor of engineering the band-edge position of the perovskite is investigated in the gradiently doped perovskite along the core-to-surface (CsPbBr-CsPbMBr). Reducing M-bromide bond strength with an increase in hardness of acidic M increases the electron ability of basic Br, thus strengthening the Pb-Br orbital coupling in M-Pb-Br, noted as the inductive effect of dopants.
View Article and Find Full Text PDFThe device's integration of molecular electronics is limited regarding the large-scale fabrication of gap electrodes on a molecular scale. The van der Waals integration (vdWI) of a vertically aligned molecular layer (0D) with 2D or 3D electrodes indicates the possibility of device's integration; however, the active junction area of 0D-2D and 0D-3D vdWIs remains at a microscale size. Here, we introduce the robust fabrication of a vertical 1D-0D-1D vdWI device with the ultra-small junction area of 1 nm achieved by cross-stacking top carbon nanotubes (CNTs) on molecularly assembled bottom CNTs.
View Article and Find Full Text PDFHere, we report the highly active and selective electrocatalytic reduction of NO ions to value-added NH over a single-atom Ru-modified Cu nanowire array on three-dimensional copper foam (Ru-Cu NW/CF) under ambient conditions. The obtained Ru-Cu NW/CF catalyst exhibited a maximum faradaic efficiency of 94.1% and an NH yield up to 211.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2021
The purpose of this study was to investigate the relationships among burden, depression, awareness of information (AIC), and safety behavior among hemodialysis patients in Korea during the COVID-19 pandemic. The study participants included 149 patients who received hemodialysis at seven general hospitals in Korea between January and February 2021. A structured questionnaire was used to survey their levels of burden, depression, AIC, adherent safety behavior (ASB), and dysfunctional safety behavior (DSB).
View Article and Find Full Text PDFThe role of countercations that do not bind to core nanocrystals (NCs) but rather ensure charge balance on ligand-exchanged NC surfaces has been rarely studied and even neglected. Such a scenario is unfortunate, as an understanding of surface chemistry has emerged as a key factor in overcoming colloidal NC limitations as catalysts. In this work, we report on the unprecedented role of countercations in ligand exchange for a colloidal transition metal dichalcogenide (TMD), WSe, to tune the d-band center toward the Fermi level for enhanced hydrogen desorption.
View Article and Find Full Text PDFControlling surface energies of each facet is essential for the anisotropic growth of two-dimensional transition metal chalcogenides (TMCs). However, it is a challenge due to stronger binding energies of ligand head groups to the edge facets compared to the planar facets. Herein, we demonstrate that the adsorption of ligands on metal positions can induce partial electron localization on the chalcogen sites, and then accelerate metal-chalcogen bond formation for enhanced anisotropic growth of nanosheets.
View Article and Find Full Text PDFWater oxidation and reduction reactions play vital roles in highly efficient hydrogen production conducted by an electrolyzer, in which the enhanced efficiency of the system is apparently accompanied by the development of active electrocatalysts. Solar energy, a sustainable and clean energy source, can supply the kinetic energy to increase the rates of catalytic reactions. In this regard, understanding of the underlying fundamental mechanisms of the photo/electrochemical process is critical for future development.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFVisible-light-driven photocatalytic CO reduction using TiO that can absorb light of all wavelengths has been sought for over half a century. Herein, we report a phase-selective disordered anatase/ordered rutile interface system for visible-light-driven, metal-free CO reduction using a narrow band structure, whose conduction band position matches well with the reduction potential of CO to CH and CO. A mixed disordered anatase/ordered rutile (A/R) TiO was prepared from anatase and rutile phase-mixed P25 TiO at room temperature and under an ambient atmosphere in sodium alkyl amine solutions.
View Article and Find Full Text PDFHighly conductive molecular wires are an important component for realizing molecular electronic devices and have to be explored in terms of interactions between molecules and electrodes in their molecular junctions. Here, new molecular wire junctions are reported to enhance charge transport through gold nanoparticle (AuNP)-linked double self-assembled monolayers (SAMs) of cobalt (II) bis-terpyridine molecules (e.g.
View Article and Find Full Text PDFAn ambipolar channel layer material is required to realize the potential benefits of ambipolar complementary metal-oxide-semiconductor field-effect transistors, namely their compact and efficient nature, reduced reverse power dissipation, and possible applicability to highly integrated circuits. Here, a ternary metal chalcogenide nanocrystal material, FeInS, is introduced as a solution-processable ambipolar channel material for field-effect transistors (FETs). The highest occupied molecular orbital and the lowest unoccupied molecular orbital of the FeInS nanocrystals are determined to be -5.
View Article and Find Full Text PDFCell Death Differ
November 2018
Recurrence and drug resistance of breast cancer are still the main reasons for breast cancer-associated deaths. Cancer stem cell (CSC) model has been proposed as a hypothesis for the lethality of breast cancer. Molecular mechanisms underlying CSC maintenance are still unclear.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2017
Information processing using molecular junctions is becoming more important as devices are miniaturized to the nanoscale. Herein, we report functional molecular junctions derived from double self-assembled monolayers (SAMs) intercalated between soft graphene electrodes. Newly assembled molecular junctions are fabricated by placing a molecular SAM/(top) electrode on another molecular SAM/(bottom) electrode by using a contact-assembly technique.
View Article and Find Full Text PDFA major challenge in the development of electrocatalysts is to determine a detailed catalysis mechanism on a molecular level for enhancing catalytic activity. Here, we present bottom-up studies for an electrocatalytic hydrogen evolution reaction (HER) process through molecular activation to systematically control surface catalytic activity corresponding to an interfacial charge transfer in a porphyrin monolayer on inactive graphene. The two-dimensional (2D) assembly of porphyrins that create homogeneous active sites (e.
View Article and Find Full Text PDFOvarian cancer is the most lethal gynecologic disease because usually, it is lately sensed, easily acquires chemoresistance, and has a high recurrence rate. Recent studies suggest that ovarian cancer stem cells (CSCs) are involved in these malignancies. Here, we demonstrated that galectin-3 maintains ovarian CSCs by activating the Notch1 intracellular domain (NICD1).
View Article and Find Full Text PDFWee1 is a member of the Serine/Threonine protein kinase family and is a key regulator of cell cycle progression. It has been known that WEE1 is highly expressed and has oncogenic functions in various cancers, but it is not yet studied in gastric cancers. In this study, we investigated the oncogenic role and therapeutic potency of targeting WEE1 in gastric cancer.
View Article and Find Full Text PDFAlthough there are numerous reports of high performance supercapacitors with porous graphene, there are few reports to control the interlayer gap between graphene sheets with conductive molecular linkers (or molecular pillars) through a π-conjugated chemical carbon-carbon bond that can maintain high conductivity, which can explain the enhanced capacitive effect of supercapacitor mechanism about accessibility of electrolyte ions. For this, we designed molecularly gap-controlled reduced graphene oxides (rGOs) via diazotization of three different phenyl, biphenyl, and para-terphenyl bis-diazonium salts (BD1-3). The graphene interlayer sub-nanopores of rGO-BD1-3 are 0.
View Article and Find Full Text PDFCD44 plays a role in the progression of tumors and is expressed in cancer stem cells (CSCs). However, the mechanisms underlying the crosstalk of CD44 with stemness genes in CSC maintenance remains unclear. In this study, we demonstrated how the cleaved intracellular domain of CD44 (CD44ICD) activates stemness factors such as Nanog, Sox2 and Oct4, and contributes to the tumorigenesis of breast cancer.
View Article and Find Full Text PDFThe pluripotency of embryonic stem cells (ESCs) is maintained by intracellular networks of many pluripotency-associated (PA) proteins such as OCT4, SOX2, and NANOG. However, the mechanisms underlying the regulation of protein homeostasis for pluripotency remain elusive. Here, we first demonstrate that autophagy acts together with the ubiquitin-proteasome system (UPS) to modulate the levels of PA proteins in human ESCs (hESCs).
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2011
The suprachiasmatic nuclei in the mammalian brain function as the regulators of circadian rhythm and coordinate the peripheral oscillators. Losses of clock genes alter gene expression and behavior. Here, we investigated whether disruption of the circadian clock and glucocorticoid signals would influence the gene expression of major urinary protein (Mup) in mice.
View Article and Find Full Text PDFDifferentiation of human pluripotent stem cells (hPSCs) into functional cell types is a crucial step in cell therapy. In the present study, we demonstrate that functional CD34(+) progenitor cells can be efficiently produced from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) by combined modulation of 2 signaling pathways. A higher proportion of CD34(+) cells (∼ 20%) could be derived from hPSCs by inhibition of mitogen-activated protein kinase (MAPK) extracellular signal-regulated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling and activation of bone morphogenic protein-4 (BMP4) signaling.
View Article and Find Full Text PDF