Background: Bone formation and resorption regulate bone homeostasis. Excessive osteoclastogenesis enhances bone resorption and causes osteoporosis. Although medicines targeting osteoclast have been developed, these drugs have several side effects.
View Article and Find Full Text PDFThe pathogenesis of osteoporosis is driven by several mechanisms including the imbalance between osteoblastic bone formation and osteoclastic bone resorption. Currently, the role of Niacin (NA), also known as vitamin B3, in the regulation of osteoblastic differentiation is not fully understood. Data from the NHANES database were employed to investigate the association of NA intake with the prevalence of osteoporosis.
View Article and Find Full Text PDFWith the threshold for crop growth data collection having been markedly decreased by sensor miniaturization and cost reduction, unmanned aerial vehicle (UAV)-based low-altitude remote sensing has shown remarkable advantages in field phenotyping experiments. However, the requirement of interdisciplinary knowledge and the complexity of the workflow have seriously hindered researchers from extracting plot-level phenotypic data from multisource and multitemporal UAV images. To address these challenges, we developed the Integrated High-Throughput Universal Phenotyping (IHUP) software as a data producer and study accelerator that included 4 functional modules: preprocessing, data extraction, data management, and data analysis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
Implant-associated infections and excessive immune responses are two major postsurgical issues for successful implantation. However, conventional strategies including antibiotic treatment and inflammatory regulation are always compromised due to the comodification of various biochemical agents and instances of functional interference. It is imperative to provide implant surfaces with satisfactory antibacterial and anti-inflammatory properties.
View Article and Find Full Text PDFLong-term use of glucocorticoids (GCs) is known to be a predominant cause of osteonecrosis of the femoral head (ONFH). Moreover, GCs can mediate apoptosis of various cell types by exaggerating oxidative stress. We have previously found that Cortistatin (CST) antagonizes oxidative stress and improves cell apoptosis in several conditions.
View Article and Find Full Text PDFBackground: An imbalance between osteogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMMSCs) can cause osteoporosis. Macrophage-derived exosomes (MD-Exos) and microRNAs (miRNAs) enriched in exosomes participate in the differentiation of BMMSCs.
Methods: Bioinformatics methods were used to analyze differentially expressed miRNAs.
Background: The imbalance between osteoblasts and osteoclasts may lead to osteoporosis. Osteoblasts and osteoclasts have different energy requirements, with aerobic glycolysis being the prominent metabolic feature of osteoblasts, while osteoclast differentiation and fusion are driven by oxidative phosphorylation.
Methods: By polymerase chain reaction as well as Western blotting, we assayed coactivator-associated arginine methyltransferase 1 (CARM1) expression in bone tissue, the mouse precranial osteoblast cell line MC3T3-E1 and the mouse monocyte macrophage leukaemia cell line RAW264.
N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the progression of osteoporosis (OP), providing novel insights into the pathogenesis of OP. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been studied in OP. Here we explored the biological role and underlying mechanism of WTAP in OP and the differentiation of bone marrow mesenchymal stem cells (BMMSCs).
View Article and Find Full Text PDFAn imbalance in the differentiation potential of bone marrow mesenchymal stem cells (BMSCs) is an important pathogenic mechanism underlying osteoporosis (OP). N6-methyladenosine (mA) is the most common post-transcriptional modification in eukaryotic cells. The role of the Wilms' tumor 1-associated protein (WTAP), a member of the mA functional protein family, in regulating BMSCs differentiation remains unknown.
View Article and Find Full Text PDFBackground: Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents. microRNAs have been found to play a vital role in tumor angiogenesis. Here, we investigated the effects of miR-199a-5p on tumor growth and angiogenesis in osteosarcoma.
View Article and Find Full Text PDFObjective: To compare cement distribution and leakage for 2 bone cement-augmented screws with different designs of injection holes in patients and the impact of screw locations and bone mineral density (BMD) on the results.
Methods: This study recruited 40 patients who underwent instrumentation with cement-augmented screws. Screw holes of group A were 4 holes located in the distal one third of screws, while screw holes of group B were 6 holes located in distal, middle, and proximal sites.
Objective: To study the curative effect of bionic tiger-bone powder on osteoporosis in ovariectomized rats and investigate its mechanism.
Methods: Overall, a 120 female Wistar rats were randomly divided into Sham (sham-operated group), ovariectomy (OVX, ovariectomized group), TB (bionic tiger-bone powder treatment group after ovariectomy) and TB + VD groups (bionic tiger-bone powder + vitamin D treatment group after ovariectomy). The osteoporotic rat model was established 3 months after ovariectomy, and rats were intragastrically administrated with the corresponding drugs.
Aims: Osteoporosis is considered a common skeletal disease. Ortho-silicic acid has been found to enhance the osteogenic differentiation of osteoblasts. However, the molecular mechanism of osteogenesis induced by ortho-silicic acid is still undefined totally.
View Article and Find Full Text PDFNumerous experiments in vitro and in vivo have shown that an appropriate increase intake of silicon can facilitate the synthesis of collagen and its stabilization and promote the differentiation and mineralization of osteoblasts. In this study, we examined whether ortho-silicic acid restrains the differentiation of osteoclast through the receptor activator of nuclear factor κB ligand (RANKL)/receptor activator of nuclear factor κB (RANK)/osteoprotegerin (OPG) signaling pathway by investigating its effect in vitro and in vivo. Bone marrow macrophage (BMM) cells were isolated and cultured with or without ortho-silicic acid, and then TRAP staining and immunofluorescence were performed to detect the differentiation of osteoclast.
View Article and Find Full Text PDF