Microorganisms
December 2024
Tylosin (TYL) pollution has aroused widespread concern, and its existence poses a serious threat to the environment and human health. Microbial degradation of antibiotics is considered to be an effective strategy to reduce the environmental impact of antibiotics, but its degradation mechanism is still unclear. In this study, transcriptome analysis was combined to explore the response mechanism of strain TYL-A1 under TYL stress.
View Article and Find Full Text PDFLuteolin-7-O-glucuronide (L7Gn) is a flavonoid isolated from numerous traditional Chinese herbal medicines that exerts anti-inflammatory effects. Previous research has revealed that aerosol inhalation is the most straightforward way of administration for the delivery of respiratory agents. Thus far, the impact of aerosol inhalation of L7Gn on lung inflammation and the underlying mechanisms remain unknown.
View Article and Find Full Text PDF17β-estradiol (E2) is an endocrine disruptor, and even trace concentrations (ng/L) of environmental estrogen can interfere with the endocrine system of organisms. Lignin holds promise in enhancing the microbial degradation E2. However, the mechanisms by which lignin facilitates this process remain unclear, which is crucial for understanding complex environmental biodegradation in nature.
View Article and Find Full Text PDFA liquid chromatography-tandem mass spectrometry method was established and validated for determining the concentrations of costunolide(CO), piperine(PI), agarotetrol(AG), glycyrrhizic acid(GL), vanillic acid(VA), and glycyrrhetinic acid(GA) in rat plasma. This method was then applied to the toxicokinetic study of these six compounds in rats with chronic cerebral ischemia(CCI) following multiple oral doses of Zhachong Shisanwei Pills. Finally, the effects of continuous multiple-dose administration of Zhachong Shisanwei Pills on the liver of CCI rats were investigated.
View Article and Find Full Text PDFThe 17β-estradiol (E2)-degrading bacterium sp.RCBS9 previously showed remarkable resistance to the combined stresses of low temperature and E2. In this study, physiological experiments and transcriptomic analysis were performed to investigate the mechanisms underlying the strain's low-temperature adaptation and briefly analyze how it maintains its ability to degrade E2 at low temperature.
View Article and Find Full Text PDFFine particulate matter (PM2.5) is a significant cause of respiratory diseases and associated cellular damage. The mechanisms behind this damage have not been fully explained.
View Article and Find Full Text PDFBackground: Penicillium oxalicum is an important fungal agent in the composting of cattle manure, but the changes that occur in the microbial community, physicochemical factors, and potential functions of microorganisms at different time points are still unclear. To this end, the dynamic changes occurring in the microbial community and physicochemical factors and their correlations during the composting of cattle manure with Penicillium oxalicum were analysed.
Results: The results showed that the main phyla observed throughout the study period were Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Halanaerobiaeota, Apicomplexa and Ascomycota.
MicroRNAs (miRNAs) are highly conserved endogenous single-stranded non-coding RNA molecules that play a crucial role in regulating gene expression to maintain normal physiological functions in fish. Nevertheless, the specific physiological role of miRNAs in lower vertebrates, particularly in comparison to mammals, remains elusive. Additionally, the mechanisms underlying the control of antiviral responses triggered by viral stimulation in fish are still not fully understood.
View Article and Find Full Text PDFIt is well known that Particulate Matter2.5 (PM) has a major adverse effect on the organism. However, the health hazards of livestock farm PM to humans and animals are not yet known, and the role of miRNAs in the cellular damage induced by livestock farm PM is also unclear.
View Article and Find Full Text PDFIn aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention.
View Article and Find Full Text PDFMicrobial degradation of tylosin (TYL) is a safe and environmentally friendly technology for remediating environmental pollution. Kurthia gibsonii (TYL-A1) and Klebsiella pneumonia (TYL-B2) were isolated from wastewater; degradation efficiency of the two strains combined was significantly greater than either alone and resulted in degradation products that were less toxic than TYL. With Polyvinyl alcohol (PVA)-sodium alginate (SA)-activated carbon (AC) used to form a bacterial immobilization carrier, the immobilized bacterial alliance reached 95.
View Article and Find Full Text PDFStaff and animals in livestock buildings are constantly exposed to fine particulate matter (PM2.5), which affects their respiratory health. However, its exact pathogenic mechanism remains unclear.
View Article and Find Full Text PDFUsing polyaspartic acid (PAsp) and bentonite (BT) as the main raw materials, a new type of degradable soil water retaining agent (PAsp-AA/BT) was synthesized by microwave radiation. The optimum synthesis conditions and comprehensive properties of PAsp-AA/BT were discussed and the structure and surface characteristics of PAspsp-AA/BT were characterized by FTIR, SEM, XRD and TGA in the paper. The results showed that the optimum synthesis conditions of PAsp-AA/BT were as follows: the dosages of polyaspartic acid (PAsp), bentonite (BT), initiator potassium persulfate, crosslinking agent N,N'-methylene bisacrylamide was 5, 3, 0.
View Article and Find Full Text PDFEcotoxicol Environ Saf
June 2024
Bioaerosols produced during animal production have potential adverse effects on the health of workers and animals. Our objective was to investigate characteristics, antibiotic-resistance genes (ARGs), and health risks of bioaerosols in various animal barns. Poultry and swine barns had high concentrations of airborne bacteria (11156 and 10917 CFU/m, respectively).
View Article and Find Full Text PDFParticulate matter (PM) is a highly hazardous airborne particulate matter that poses a significant risk to humans and animals. Urban airborne particulate matter contributes to the increased incidence and mortality of respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), in humans. However, the specific mechanism by which PM affects animals in barn environments is yet to be elucidated.
View Article and Find Full Text PDFThe ubiquitous Gram-negative bacterial pathogen () can easily cause inflammatory reactions in aquatic organisms, resulting in high mortality and huge economic losses. MicroRNAs (miRNAs) participate in immune regulation and have certain conserved properties. MiRNAs are involved in the immune responses of a variety of teleost fish infected with bacteria, whereas there is no related report in silver carp ().
View Article and Find Full Text PDFTo investigate the role of miR-212-5p-targeted during the apoptosis of rat alveolar macrophages induced by cowshed PM. miRNA and related target genes and pathways were predicted using the KEGG, TargetScan, and other prediction websites. NR8383 macrophages were treated with cowshed PM to establish an in vitro lung injury model in rats; meanwhile, for the assessment of cell viability, apoptosis, intracellular calcium ions, and mitochondrial membrane potential in NR8383 cells, RT-qPCR was used to detect the expression of miR-212-5p and the target gene .
View Article and Find Full Text PDFPurpose: This study aimed to investigate the main pharmacological action and underlying mechanisms of Jin Gu Lian Capsule (JGL) against rheumatoid arthritis (RA) based on network pharmacology and experimental verification.
Methods: Network pharmacology approaches were performed to explore the core active compounds of JGL, key therapeutic targets, and signaling pathways. Molecular docking was used to predict the binding affinity of compounds with targets.
Background: A lot of kitchen waste oil is produced every day worldwide, leading to serious environmental pollution. As one of the environmental protection methods, microorganisms are widely used treating of various wastes. Lipase, as one of the cleaning agents can effectively degrade kitchen waste oil.
View Article and Find Full Text PDFSteroidal estrogens residues in the environment can be a serious hazard to humans and animals and has been listed as group 1 carcinogens by World Health Organization (WHO). Microbial degradation is one of the effective strategies for the removal of such contaminants. In this study, a low-temperature degrading bacterial strain (Rhodococcus sp.
View Article and Find Full Text PDFIn geese breeding, due to the frequent influence of drugs and environmental and other factors, geese are extremely prone to oxidative stress, which adversely affects growth and development, geese meat quality, down production, and severely affects the development of the geese industry. Ferulic acid from plant extracts can be used as a feed additive, which is safe and non-toxic, and it can exert certain therapeutic effects on oxidative stress in geese. This experiment investigated the effect of ferulic acid on the growth performance, organs indices, and intestinal oxidative indices of Jilin white geese under lipopolysaccharide-induced oxidative stress.
View Article and Find Full Text PDFEthnopharmacological Relevance: Pulmonary fibrosis (PF) is a chronic, progressive, and often fatal interstitial lung disease. Traditional Chinese medicine formulations and their active ingredients have shown potential in the treatment of PF. Panax notoginseng saponin (PNS) is extracted from the widely used traditional Chinese medicinal herb Panax notoginseng (Burkill) F.
View Article and Find Full Text PDFBackground: 17β-estradiol (E2) residues exhibit harmful effects both for human and animals and have got global attention of the scientific community. Microbial enzymes are considered as one of the effective strategies having great potential for removal E2 residues from the environment. However, limited literature is available on the removal of E2 from wastewater using short-chain dehydrogenase.
View Article and Find Full Text PDF