Publications by authors named "Yungang Zhou"

Multidrug-resistant (MDR) , especially those strains producing extended-spectrum β-lactamases (ESBL) and carbapenemases, represents a major public health concern. In the present work, we characterized 27 MDR clinical isolates, including 23 , three , and one , by whole-genome analysis. Among the 27 isolates analyzed, SXT/R391 ICEs were detected in 14 strains, and the complete sequences of nine ICEs were obtained.

View Article and Find Full Text PDF

Recently, two-dimensional (2D) Janus semiconductors have attracted great attention in photocatalytic applications owing to their extraordinary properties, especially the intrinsic polarization-induced spontaneous carrier separation, strong optical absorption, and ultrahigh solar-to-hydrogen (STH) efficiency. However, experimental achievable candidates for 2D intrinsic Janus semiconductors are rarely reported. Herein, based on density functional theory (DFT) calculations, we uncovered two new 2D photocatalysts, namely, Janus NbSBr and TaSBr bilayers.

View Article and Find Full Text PDF

Two-dimensional (2D) Janus structures, which are totally different from prevailing 2D structures, are more interesting for photocatalytic water splitting. Here we proposed some inartificial 2D GeSe Janus structures. Excellent photocatalytic properties are revealed: (a) GeSe structures exhibit layer-independent direct gap character with appropriate band gaps of 2.

View Article and Find Full Text PDF

Background: The Gram-negative bacterium Kerstersia gyiorum, a potential etiological agent of clinical infections, was isolated from several human patients presenting clinical symptoms. Its significance as a possible pathogen has been previously overlooked as no disease has thus far been definitively associated with this bacterium. To better understand how the organism contributes to the infectious disease, we determined the complete genomic sequence of K.

View Article and Find Full Text PDF

VO (B) features two lithiation/delithiation processes, one of which is kinetically facile and has been commonly observed at 2.5 V versus Li/Li in various VO (B) structures. In contrast, the other process, which occurs at 2.

View Article and Find Full Text PDF

Since the first exfoliation and identification of graphene in 2004, research on layered ultrathin two-dimensional (2D) nanomaterials has achieved remarkable progress. Realizing the special importance of 2D geometry, we demonstrate that the controlled synthesis of nonlayered nanomaterials in 2D geometry can yield some unique properties that otherwise cannot be achieved in these nonlayered systems. Herein, we report a systematic study involving theoretical and experimental approaches to evaluate the Li-ion storage capability in 2D atomic sheets of nonlayered molybdenum dioxide (MoO).

View Article and Find Full Text PDF

Effectively modulating the magnetism of two-dimensional (2D) systems is critical for the application of magnetic nanostructures in quantum information devices. In this work, by employing density functional theory calculations, we found the coexistence of Co doping and strain can effectively control the spin states of arsenene and antimonene structures. Unstrained Co-doped arsenene (arsenene-Co) and Co-doped antimonene (antimonene-Co) structures are nonmagnetic while under a strain, the magnetic moments of both cases were abruptly increased to about 2 .

View Article and Find Full Text PDF

The potential of MoO crystal as an electrode material is reported, and nanostructural MoO systems, including nanoparticles, nanospheres, nanobelts and nanowires, were synthesized and proved to be advanced electrode materials. A two-dimensional (2D) geometric structure represents an extreme of surface-to-volume ratio, and thus is more suitable as an electrode material in general. Stimulated by the recent fabrication of 2D MoO, we adopted an ab initio molecular dynamics simulation and density functional theory calculation to study the stability and electrochemical properties of a MoO sheet.

View Article and Find Full Text PDF

According to the Mermin-Wagner theorem and theory of elasticity, long-range order in two-dimensional (2D) crystals will be inevitably destroyed due to a thermal fluctuation. Thus, a 2D lattice prefers a corrugation meaning that a 2D crystal is easy to present a ripple. In this work, we, via employing ab initio molecular dynamics (AIMD) simulations, for the first time evidenced that the inherent dynamics of phosphorene would lead to a spontaneous formation of ripples at room temperature.

View Article and Find Full Text PDF

Background: The ras genes play an important role in the development and progression of human tumours. Neutralizing Ras proteins in the cytoplasm could be an effective approach to blocking ras signalling. In this study, we prepared anti-p21Ras single chain fragment variable antibody (scFv) and investigated its immunoreactivity with human tumours.

View Article and Find Full Text PDF

Half-metallicity combined with wide half-metallic gap, unique ferromagnetic character and high Curie temperature has become a key driving force to develop next-generation spintronic devices. In previous studies, such half-metallicity always occurred under certain manipulation. Here, we, via examining a series of two-dimensional transition-metal trichlorides, evidenced that TiCl3 and VCl3 sheets could display exciting half-metallicity without involving any external modification.

View Article and Find Full Text PDF

Two-dimensional boron materials have recently attracted extensive theoretical interest because of their exceptional structural complexity and remarkable physical and chemical properties. However, such 2D boron monolayers have still not been synthesized. In this report, the synthesis of atomically thin 2D γ-boron films on copper foils is achieved by chemical vapor deposition using a mixture of pure boron and boron oxide powders as the boron source and hydrogen gas as the carrier gas.

View Article and Find Full Text PDF

Voltage and capacity fading of layer structured lithium and manganese rich (LMR) transition metal oxide is directly related to the structural and composition evolution of the material during the cycling of the battery. However, understanding such evolution at atomic level remains elusive. On the basis of atomic level structural imaging, elemental mapping of the pristine and cycled samples, and density functional theory calculations, it is found that accompanying the hoping of Li ions is the simultaneous migration of Ni ions toward the surface from the bulk lattice, leading to the gradual depletion of Ni in the bulk lattice and thickening of a Ni enriched surface reconstruction layer (SRL).

View Article and Find Full Text PDF

The effective modulation of the band gaps in nanostructures is of both fundamental and technological interest because a tunable band gap gives great flexibility in the design and optimization of nanodevices. Using density functional theory calculations, we have shown that germanane nanoribbons of various widths or under various strains can provide rich band gaps. Width- and strain-induced changes in the band gaps of germanane nanoribbons result from a reduction in quantum confinement with width and the weakening of sp(3) hybridization with strain, respectively.

View Article and Find Full Text PDF

The achievement of half-metallicity with ferromagnetic (FM) coupling has become a key technology for the development of one-dimensional (1D) nanoribbons for spintronic applications. Unfortunately, in previous studies, such a half-metallicity always occurs upon certain external constraints. Here we, for the first time, demonstrate, via density functional theory (DFT), that the recent experimentally realized gallium sulfide nanoribbons (GaSNRs) can display an intrinsic half-metallic character with FM coupling, raised from Ga-4s, Ga-4p and S-3p states at the Ga-dominated edge.

View Article and Find Full Text PDF

Prompted by recent experimental achievement of transition metal (TM) atoms substituted in MoS2 nanostructures during growth or saturating existing vacancies (Sun et al., ACS Nano, 2013, 7, 3506; Deepak et al., J.

View Article and Find Full Text PDF

The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems.

View Article and Find Full Text PDF

Motivated by recent investigations of semi-decorated two dimensional honeycomb structures, we demonstrated, via spin-polarized molecular-dynamics simulations and density-functional-theory calculations, that semi-sulfuretted transition-metal dichalcogenides of MX type (M = V, Nb, Ta; X = S, Se, Te) are stable and display remarkable magnetism. The unpaired d electron of the transition-metal atom arising from the breakage of the M-X bond is the mechanism behind the induction of the magnetism. The remarkable magnetism of the transition-metal atoms is caused by ferromagnetic coupling due to the competitive effects of through-bond interactions and through-space interactions.

View Article and Find Full Text PDF

Developing approaches to effectively induce and control the magnetic states is critical to the use of magnetic nanostructures in quantum information devices but is still challenging. Here MoS2-based nanostructures including atomic defects, nanoholes, nanodots and antidots are characterized with spin-polarized density functional theory. The S-vacancy defect is more likely to form than the Mo-vacancy defect due to the form of Mo-Mo metallic bonds.

View Article and Find Full Text PDF

Due to its unique electronic properties and wide spectrum of promising applications, graphene has attracted much attention from scientists in various fields. Control and engineering of graphene's semiconducting properties is considered to be key to its applications in electronic devices. Here, we report a novel method to prepare in situ nitrogen-doped graphene by microwave plasma assisted chemical vapor deposition (CVD) using PDMS (polydimethylsiloxane) as a solid carbon source.

View Article and Find Full Text PDF

Developing approaches to effectively induce and control the magnetic states is critical to the use of magnetic nanostructures in quantum information devices but is still challenging. Here we have demonstrated, by employing the density functional theory calculations, the existence of infinite magnetic sheets with structural integrity and magnetic homogeneity. Examination of a series of transition metal dichalcogenides shows that the biaxial tensile strained NbS(2) and NbSe(2) structures can be magnetized with a ferromagnetic character due to the competitive effects of through-bond interaction and through-space interaction.

View Article and Find Full Text PDF