Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, playing a vital role in trehalose production. Understanding the catalytic mechanism of TreS is crucial for optimizing the enzyme activity and enhancing its suitability for industrial applications. Here, we report the crystal structures of both the wild type and the E324D mutant of trehalose synthase in complex with the trehalose analogue, validoxylamine A.
View Article and Find Full Text PDFMetagenomic-based studies have predicted an extraordinary number of potential antibiotic-resistance genes (ARGs). These ARGs are hidden in various environmental bacteria and may become a latent crisis for antibiotic therapy via horizontal gene transfer. In this study, we focus on a resistance gene cph, which encodes a phosphotransferase (Cph) that confers resistance to the antituberculosis drug capreomycin (CMN).
View Article and Find Full Text PDFOxidized cysteine residues are highly reactive and can form functional covalent conjugates, of which the allosteric redox switch formed by the lysine-cysteine NOS bridge is an example. Here, we report a noncanonical FAD-dependent enzyme Orf1 that adds a glycine-derived N-formimidoyl group to glycinothricin to form the antibiotic BD-12. X-ray crystallography was used to investigate this complex enzymatic process, which showed Orf1 has two substrate-binding sites that sit 13.
View Article and Find Full Text PDFCapreomycidine (Cap) is a nonproteinogenic amino acid and building block of nonribosomal peptide (NRP) natural products. We report the formation and activation of Cap in capreomycin biosynthesis. CmnC and CmnD catalyzed hydroxylation and cyclization, respectively, of l-Arg to form l-Cap.
View Article and Find Full Text PDFHuman bleomycin hydrolase (hBH) catalyzes deamidation of the anticancer drug bleomycins (BLM). This enzyme is involved in BLM detoxification and drug resistance. Herein, we report the putative BLM-binding site and catalytic mechanism of hBH.
View Article and Find Full Text PDFKasugamycin (KSM), an aminoglycoside antibiotic, is composed of three chemical moieties: D--inositol, kasugamine and glycine imine. Despite being discovered more than 50 years ago, the biosynthetic pathway of KSM remains an unresolved puzzle. Here we report a structural and functional analysis for an epimerase, KasQ, that primes KSM biosynthesis rather than the previously proposed KasF/H, which instead acts as an acetyltransferase, inactivating KSM.
View Article and Find Full Text PDFCapreomycin (CMN) is an important second-line antituberculosis antibiotic isolated from subspecies . The gene cluster for CMN biosynthesis has been identified and sequenced, wherein the gene was annotated as a phosphotransferase likely engaging in self-resistance. Previous studies reported that Cph inactivates two CMNs, CMN IA and IIA, by phosphorylation.
View Article and Find Full Text PDFThis paper evaluates the performance of Fama-French models on US stock markets during the selected events by studying the of the models. We find that the influence of Dotcom bubble to the of growth model is statistically significant. The of growth portfolios decreases rapidly during the Financial crisis of 2008.
View Article and Find Full Text PDFPlant type III polyketide synthases produce diverse bioactive molecules with a great medicinal significance to human diseases. Here, we demonstrated versatility of a stilbene synthase (STS) from , which can accept various non-physiological substrates to form unnatural polyketide products. Three enzymes (4-coumarate CoA ligase, malonyl-CoA synthetase and engineered benzoate CoA ligase) along with synthetic chemistry was practiced to synthesize starter and extender substrates for STS.
View Article and Find Full Text PDFThough reactive flavin-N5/C4α-oxide intermediates can be spectroscopically profiled for some flavin-assisted enzymatic reactions, their exact chemical configurations are hardly visualized. Structural systems biology and stable isotopic labelling techniques were exploited to correct this stereotypical view. Three transition-like complexes, the α-ketoacid…N5-FMN complex (I), the FMN -N5-aloxyl-C'α -C4α zwitterion (II), and the FMN-N5-ethenol-N5-C4α-epoxide (III), were determined from mandelate oxidase (Hmo) or its mutant Y128F (monooxygenase) crystals soaked with monofluoropyruvate (a product mimic), establishing that N5 of FMN an alternative reaction center can polarize to an ylide-like mesomer in the active site.
View Article and Find Full Text PDFThe Y128F single mutant of p-hydroxymandelate oxidase (Hmo) is capable of oxidizing mandelate to benzoate via a four-electron oxidative decarboxylation reaction. When benzoylformate (the product of the first two-electron oxidation) and hydrogen peroxide (an oxidant) were used as substrates the reaction did not proceed, suggesting that free hydrogen peroxide is not the committed oxidant in the second two-electron oxidation. How the flavin mononucleotide (FMN)-dependent four-electron oxidation reaction takes place remains elusive.
View Article and Find Full Text PDFp-Hydroxymandelate oxidase (Hmo) is a flavin mononucleotide (FMN)-dependent enzyme that oxidizes mandelate to benzoylformate. How the FMN-dependent oxidation is executed by Hmo remains unclear at the molecular level. A continuum of snapshots from crystal structures of Hmo and its mutants in complex with physiological/nonphysiological substrates, products and inhibitors provides a rationale for its substrate enantioselectivity/promiscuity, its active-site geometry/reactivity and its direct hydride-transfer mechanism.
View Article and Find Full Text PDFLipoglycopeptide antibiotics, for example, teicoplanin (Tei) and A40926, are more potent than vancomycin against Gram-positive (Gram-(+)) drug-resistant pathogens, for example, methicillin-resistant Staphylococcus aureus (MRSA). To extend their therapeutic effectiveness on vancomycin-resistant S. aureus (VRSA), the biosynthetic pathway of the N-acyl glucosamine (Glc) pharmacophore at residue 4 (r4) of teicoplanin pseudoaglycone redirection to residue 6 (r6) was attempted.
View Article and Find Full Text PDFTransketolase (TK) catalyzes a reversible transfer of a two-carbon (C ) unit between phosphoketose donors and phosphoaldose acceptors, for which the group-transfer reaction that follows a one- or two-electron mechanism and the force that breaks the C2"-C3" bond of the ketose donors remain unresolved. Herein, we report ultrahigh-resolution crystal structures of a TK (TKps) from Pichia stipitis in previously undiscovered intermediate states and support a diradical mechanism for a reversible group-transfer reaction. In conjunction with MS, NMR spectroscopy, EPR and computational analyses, it is concluded that the enzyme-catalyzed non-Kekulé diradical cofactor brings about the C2"-C3" bond cleavage/formation for the C -unit transfer reaction, for which suppression of activation energy and activation and destabilization of enzymatic intermediates are facilitated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2018
It is theoretically plausible that thiazolium mesomerizes to congeners other than carbene in a low effective dielectric binding site; especially given the energetics and uneven electronegativity of carbene groups. However, such a phenomenon has never been reported. Nine crystal structures of transketolase obtained from Pichia stipitis (TKps) are reported with subatomic resolution, where thiazolium displays an extraordinary ring-bending effect.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
November 2017
Trehalose synthase (TS) catalyzes the reversible conversion of maltose to trehalose and belongs to glycoside hydrolase family 13 (GH13). Previous mechanistic analysis suggested a rate-limiting protein conformational change, which is probably the opening and closing of the active site. Consistently, crystal structures of Deinococcus radiodurans TS (DrTS) in complex with the inhibitor Tris displayed an enclosed active site for catalysis of the intramoleular isomerization.
View Article and Find Full Text PDFNanodiamond (ND) is a carbon-based nanomaterial with potential for a wide range of biological applications. One of such applications is to facilitate the nucleation of protein crystals in aqueous solution. Here, we show that NDs (nominal diameters of 30 and 100 nm) after surface oxidation in air and subsequent treatment in strong acids are useful as heterogeneous nucleating agents for protein crystallization.
View Article and Find Full Text PDFIn the development of new functionalities of transketolase for the industrial strain Pichia stipitis (TKps) the structural information of TKps would allow us to gain insight into the enzyme's reaction mechanisms, substrates selectivity and reaction directionality to help reach the goal. We here report seven TKps crystal structures of wild type (WT) and mutants in complex with various physiological ligands. These complexes were refined to resolutions at 1.
View Article and Find Full Text PDFTrehalose synthase catalyzes the simple conversion of the inexpensive maltose into trehalose with a side reaction of hydrolysis. Here, the crystal structures of the wild type and the N253A mutant of Deinococcus radiodurans trehalose synthase (DrTS) in complex with the inhibitor Tris are reported. DrTS consists of a catalytic (β/α)8 barrel, subdomain B, a C-terminal β domain and two TS-unique subdomains (S7 and S8).
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
October 2014
Poly[(R)-3-hydroxybutyrate] (PHB) is a microbial biopolymer that has been commercialized as biodegradable plastics. The key enzyme for the degradation is PHB depolymerase (PhaZ). A new intracellular PhaZ from Bacillus thuringiensis (BtPhaZ) has been screened for potential applications in polymer biodegradation.
View Article and Find Full Text PDF