Pleiotropy, which refers to the ability of different mutations on the same gene to cause different pathological effects in human genetic diseases, is important in understanding system-level biological diseases. Although some biological experiments have been proposed, still little is known about pleiotropy on gene-gene dynamics, since most previous studies have been based on correlation analysis. Therefore, a new perspective is needed to investigate pleiotropy in terms of gene-gene dynamical characteristics.
View Article and Find Full Text PDFMotivation: It is a challenging problem in systems biology to infer both the network structure and dynamics of a gene regulatory network from steady-state gene expression data. Some methods based on Boolean or differential equation models have been proposed but they were not efficient in inference of large-scale networks. Therefore, it is necessary to develop a method to infer the network structure and dynamics accurately on large-scale networks using steady-state expression.
View Article and Find Full Text PDFBioinformatics
December 2020
Summary: In systems biology, it is challenging to accurately infer a regulatory network from time-series gene expression data, and a variety of methods have been proposed. Most of them were computationally inefficient in inferring very large networks, though, because of the increasing number of candidate regulatory genes. Although a recent approach called GABNI (genetic algorithm-based Boolean network inference) was presented to resolve this problem using a genetic algorithm, there is room for performance improvement because it employed a limited representation model of regulatory functions.
View Article and Find Full Text PDFBackground: Many previous clinical studies have found that accumulated sequential mutations are statistically related to tumorigenesis. However, they are limited in fully elucidating the significance of the ordered-mutation because they did not focus on the network dynamics. Therefore, there is a pressing need to investigate the dynamics characteristics induced by ordered-mutations.
View Article and Find Full Text PDFThere have been many in silico studies based on a Boolean network model to investigate network sensitivity against gene or interaction mutations. However, there are no proper tools to examine the network sensitivity against many different types of mutations, including user-defined ones. To address this issue, we developed RMut, which is an R package to analyze the Boolean network-based sensitivity by efficiently employing not only many well-known node-based and edgetic mutations but also novel user-defined mutations.
View Article and Find Full Text PDFBioinformatics
September 2018
Motivation: Inferring a gene regulatory network from time-series gene expression data is a fundamental problem in systems biology, and many methods have been proposed. However, most of them were not efficient in inferring regulatory relations involved by a large number of genes because they limited the number of regulatory genes or computed an approximated reliability of multivariate relations. Therefore, an improved method is needed to efficiently search more generalized and scalable regulatory relations.
View Article and Find Full Text PDFSpecific molecular signaling networks underlie different cancer types and quantitative analyses on those cancer networks can provide useful information about cancer treatments. Their structural metrics can reveal survivability of cancer patients and be used to identify biomarker genes for early cancer detection. In this study, we devised a novel structural metric called hierarchical closeness (HC) entropy and found that it was negatively correlated with 5-year survival rates.
View Article and Find Full Text PDFBackground: Biological networks consisting of molecular components and interactions are represented by a graph model. There have been some studies based on that model to analyze a relationship between structural characteristics and dynamical behaviors in signaling network. However, little attention has been paid to changes of modularity and robustness in mutant networks.
View Article and Find Full Text PDFBackground: Identification of novel gene-gene relations is a crucial issue to understand system-level biological phenomena. To this end, many methods based on a correlation analysis of gene expressions or structural analysis of molecular interaction networks have been proposed. They have a limitation in identifying more complicated gene-gene dynamical relations, though.
View Article and Find Full Text PDFBackground: Inferring a gene regulatory network from time-series gene expression data in systems biology is a challenging problem. Many methods have been suggested, most of which have a scalability limitation due to the combinatorial cost of searching a regulatory set of genes. In addition, they have focused on the accurate inference of a network structure only.
View Article and Find Full Text PDFBackground: Although there have been many studies revealing that dynamic robustness of a biological network is related to its modularity characteristics, no proper tool exists to investigate the relation between network dynamics and modularity.
Results: Accordingly, we developed a novel Cytoscape app called MORO, which can conveniently analyze the relationship between network modularity and robustness. We employed an existing algorithm to analyze the modularity of directed graphs and a Boolean network model for robustness calculation.
Bioinformatics
September 2016
Motivation: Biological networks are composed of molecular components and their interactions represented by nodes and edges, respectively, in a graph model. Based on this model, there were many studies with respect to effects of node-based mutations on the network dynamics, whereas little attention was paid to edgetic mutations so far.
Results: In this paper, we defined an edgetic sensitivity measure that quantifies how likely a converging attractor is changed by edge-removal mutations in a Boolean network model.
BMC Syst Biol
August 2016
Background: Biological networks keep their functions robust against perturbations. Many previous studies through simulations or experiments have shown that feedback loop (FBL) structures play an important role in controlling the network robustness without fully explaining how they do it. Hence, there is a pressing need to more rigorously analyze the influence of FBL structures on network robustness.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
October 2017
It has been known that the robust behavior of a cellular signaling network is strongly related to the structural characteristics of the network, such as connectivity, the number of feedback loops, and the number of feed-forward loops. Previous studies proved such relationships through dynamical simulations of various random network models. Most of them, however, focused on robustness against a single node mutation.
View Article and Find Full Text PDFEfficiently identifying functionally important genes in order to understand the minimal requirements of normal cellular development is challenging. To this end, a variety of structural measures have been proposed and their effectiveness has been investigated in recent literature; however, few studies have shown the effectiveness of dynamics-based measures. This led us to investigate a dynamic measure to identify functionally important genes, and the effectiveness of which was verified through application on two large-scale human signaling networks.
View Article and Find Full Text PDFComput Biol Chem
December 2014
Background: Many structural centrality measures were proposed to predict putative disease genes on biological networks. Closeness is one of the best-known structural centrality measures, and its effectiveness for disease gene prediction on undirected biological networks has been frequently reported. However, it is not clear whether closeness is effective for disease gene prediction on directed biological networks such as signaling networks.
View Article and Find Full Text PDFIt has been a challenge in systems biology to unravel relationships between structural properties and dynamic behaviors of biological networks. A Cytoscape plugin named NetDS was recently proposed to analyze the robustness-related dynamics and feed-forward/feedback loop structures of biological networks. Despite such a useful function, limitations on the network size that can be analyzed exist due to high computational costs.
View Article and Find Full Text PDFJ R Soc Interface
November 2013
Many biological networks tend to have a high modularity structural property and the dynamic characteristic of high robustness against perturbations. However, the relationship between modularity and robustness is not well understood. To investigate this relationship, we examined real signalling networks and conducted simulations using a random Boolean network model.
View Article and Find Full Text PDFBackground: Finding candidate genes associated with a disease is an important issue in biomedical research. Recently, many network-based methods have been proposed that implicitly utilize the modularity principle, which states that genes causing the same or similar diseases tend to form physical or functional modules in gene/protein relationship networks. Of these methods, the random walk with restart (RWR) algorithm is considered to be a state-of-the-art approach, but the modularity principle has not been fully considered in traditional RWR approaches.
View Article and Find Full Text PDFMotivation: Many studies have investigated the relationship between structural properties and dynamic behaviors in biological networks. In particular, feedback loop (FBL) and feedforward loop (FFL) structures have received a great deal of attention. One interesting and common property of FBL and FFL structures is their coherency of coupling.
View Article and Find Full Text PDFMedical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR) image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter.
View Article and Find Full Text PDFFinding genes associated with a disease is an important issue in the biomedical area and many gene prioritization methods have been proposed for this goal. Among these, network-based approaches are recently proposed and outperformed functional annotation-based ones. Here, we introduce a novel Cytoscape plug-in, GPEC, to help identify putative genes likely to be associated with specific diseases or pathways.
View Article and Find Full Text PDFSummary: NetDS is a novel Cytoscape plugin that conveniently simulates dynamics related to robustness, and examines structural properties with respect to feedforward/feedback loops. It can evaluate how robustly a network sustains a stable state against mutations by employing a Boolean network model. In addition, the plugin can examine all feedforward/feedback loops appearing in a network and determine whether or not a pair of loops is coupled.
View Article and Find Full Text PDFThe network of biomolecular interactions that occurs within cells is large and complex. When such a network is analyzed, it can be helpful to reduce the complexity of the network to a "kernel" that maintains the essential regulatory functions for the output under consideration. We developed an algorithm to identify such a kernel and showed that the resultant kernel preserves the network dynamics.
View Article and Find Full Text PDFBioinformatics
April 2011
Motivation: In general, diseases are more likely to be comorbid if they share associated genes or molecular interactions in a cellular process. However, there are still a number of pairs of diseases which show relatively high comorbidity but do not share any associated genes or interactions. This observation raises the need for a novel factor which can explain the underlying mechanism of comorbidity.
View Article and Find Full Text PDF