The main goal of this study is to investigate the doping effects of carbon nanotubes (CNTs) and graphene on the needle-punched carbon/carbon (C/C) composites that are prepared by liquid-phase impregnation. In order to achieve, for the C/C composites, the purposes of high flexural strength, stable friction coefficient, low weight loss, and high thermal conductivity, our primary concern is to examine the flexural properties and the tribological performance, and then to explore a little further into the influence on thermal conductivity. In this study, carbon fiber preforms were first fabricated by needle-punched carbon-fiber cloth, and then liquid-phase phenolic resin, doped with different proportions of carbon nanotubes and graphene, was used as the impregnation solution to carry out multiple densification (impregnation-carbonization) cycles and fabricate various C/C composites.
View Article and Find Full Text PDFMicromachines (Basel)
November 2022
The influence of the substrate temperature on the structural, surface morphological, optical and nanomechanical properties of NiO films deposited on glass substrates using radio-frequency magnetron sputtering was examined by X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Visible spectroscopy and nanoindentation, respectively. The results indicate that the substrate temperature exhibits significant influences on both the grain texturing orientation and surface morphology of the films. Namely, the dominant crystallographic orientation of the films switches from (111) to (200) accompanied by progressively roughening of the surface when the substrate temperature is increased from 300 °C to 500 °C.
View Article and Find Full Text PDF