Publications by authors named "Yung Yang Liu"

Mechanical ventilation (MV), used in patients with acute lung injury (ALI), induces diaphragmatic myofiber atrophy and contractile inactivity, termed ventilator-induced diaphragm dysfunction. Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating fibrogenesis during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, myofiber fibrosis, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase diaphragm muscle fibrosis through the PI3K-γ pathway.

View Article and Find Full Text PDF

Mechanical ventilation (MV) used in patients with acute lung injury (ALI) induces lung inflammation and causes fibroblast proliferation and excessive collagen deposition-a process termed epithelial-mesenchymal transition (EMT). Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating EMT during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, EMT, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase EMT through the PI3K-γ pathway.

View Article and Find Full Text PDF

This study aimed to investigate the proportion of young OSA adults with sleep-related complaints in a sleep center, affiliated with a tertiary medical center for over a decade. This study presents a chronicle change in the numbers of young adults receiving polysomnography (PSG) and young patients with OSA from 2000 to 2017. We further analyzed 371 young patients with OSA among 2378 patients receiving PSG in our sleep center from 2016 to 2017 to capture their characteristics.

View Article and Find Full Text PDF

Purpose: Obstructive sleep apnea (OSA) is characterized by intermittent hypoxemia and sleep fragmentation. While apnea is pronounced with severe desaturation during rapid eye movement (REM) sleep, REM-related OSA is a distinct phenotype of OSA associated with respiratory disturbances predominantly during REM sleep. In this study, we investigated the clinical features of REM-related OSA in Taiwan.

View Article and Find Full Text PDF

The cellular process responsible for the degradation of cytosolic proteins and subcellular organelles in lysosomes was termed "autophagy." This process occurs at a basal level in most tissues as part of tissue homeostasis that redounds to the regular turnover of components inside cytoplasm. The breakthrough in the autophagy field is the identification of key players in the autophagy pathway, compounded under the name "autophagy-related genes" (ATG) encoding for autophagy effector proteins.

View Article and Find Full Text PDF

Mechanical ventilation (MV) is essential for patients with sepsis-related respiratory failure but can cause ventilator-induced diaphragm dysfunction (VIDD), which involves diaphragmatic myofiber atrophy and contractile inactivity. Mitochondrial DNA, oxidative stress, mitochondrial dynamics, and biogenesis are associated with VIDD. Hypoxia-inducible factor 1α (HIF-1α) is crucial in the modulation of diaphragm immune responses.

View Article and Find Full Text PDF

Peptide drugs that target protein-protein interactions have attracted mounting research efforts towards clinical developments over the past decades. Increasing reports have indicated that expression of Musashi 1 (MSI1) is tightly correlated to high grade of cancers as well as enrichment of cancer stem cells. Treatment failure in malignant tumors glioblastoma multiform (GBM) had also been correlated to CSC-regulating properties of MSI1.

View Article and Find Full Text PDF

Mechanical ventilation (MV) is required to maintain life for patients with sepsis-related acute lung injury but can cause diaphragmatic myotrauma with muscle damage and weakness, known as ventilator-induced diaphragm dysfunction (VIDD). Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in inducing inflammation and apoptosis. Low-molecular-weight heparin (LMWH) was proven to have anti-inflammatory properties.

View Article and Find Full Text PDF

Aerobic exercise induces oxidative stress and DNA damage, nevertheless, lowers cancer incidence. It remains unclear how genetic stability is maintained under this condition. Here, we examined the dynamic change of the tumor suppressor p16 in cells of skeletal muscle among young men following 60-min of aerobic cycling at 70% maximal oxygen consumption (V̇O).

View Article and Find Full Text PDF

Patients with sepsis frequently require mechanical ventilation (MV) to survive. However, MV has been shown to induce the production of proinflammatory cytokines, causing ventilator-induced lung injury (VILI). It has been demonstrated that hypoxia-inducible factor (HIF)-1α plays a crucial role in inducing both apoptotic and inflammatory processes.

View Article and Find Full Text PDF

Mechanical ventilation (MV) can save the lives of patients with sepsis. However, MV in both animal and human studies has resulted in ventilator-induced diaphragm dysfunction (VIDD). Sepsis may promote skeletal muscle atrophy in critically ill patients.

View Article and Find Full Text PDF

Best dystrophy (BD), also termed best vitelliform macular dystrophy (BVMD), is a juvenile-onset form of macular degeneration and can cause central visual loss. Unfortunately, there is no clear definite therapy for BD or improving the visual function on this progressive disease. The human induced pluripotent stem cell (iPSC) system has been recently applied as an effective tool for genetic consultation and chemical drug screening.

View Article and Find Full Text PDF

Electric field stimulation is known to affect various cellular processes, including cell fate specification and differentiation, particularly towards neuronal lineages. This makes it a promising therapeutic strategy to stimulate regeneration of neuronal tissues. Retinal ganglion cells (RGCs) is a type of neural cells of the retina responsible for transduction of visual signals from the retina to the brain cortex, and is often degenerated in various blindness-causing retinal diseases.

View Article and Find Full Text PDF

Atypical teratoid/rhabdoid tumor (ATRT) is a rare pediatric brain tumor with extremely high aggressiveness and poor prognosis. The tumor microenvironment is regulated by a complex interaction among distinct cell types, yet the crosstalk between tumor-associated mesenchymal stem cells (tMSCs) and naïve ATRT cells are unclear. In this study, we sought to identify the secretory factor(s) that is responsible for the tMSC-mediated regulation of ATRT migration.

View Article and Find Full Text PDF

Background: The major curative remedy for advanced liver failure is hepatic transplantation. However, the conventional medicine still shows the limitations and obstacles for liver regeneration. Importantly, it is unclear whether we can get a rapid and high efficacy platform to facilitate to reprogram hepatic capability.

View Article and Find Full Text PDF

Background: Lung cancer is one of the major causes of carcinoma-related deaths in the world. Importantly, lung adenocarcinoma (LAC) is the most common type with poor outcome. However, the progressive clinical phenotype and biomolecular signature of lung cancer presenting the cancer stem-like and metastatic characteristics are still unclear.

View Article and Find Full Text PDF

Mechanical ventilation (MV) is life-saving for patients with acute respiratory failure but also causes difficult liberation of patients from ventilator due to rapid decrease of diaphragm muscle endurance and strength, which is termed ventilator-induced diaphragmatic damage (VIDD). Numerous studies have revealed that VIDD could increase extubation failure, ICU stay, ICU mortality, and healthcare expenditures. However, the mechanisms of VIDD, potentially involving a multistep process including muscle atrophy, oxidative loads, structural damage, and muscle fiber remodeling, are not fully elucidated.

View Article and Find Full Text PDF

Mechanical ventilation (MV) is often used to maintain life in patients with sepsis and sepsis-related acute lung injury. However, controlled MV may cause diaphragm weakness due to muscle injury and atrophy, an effect termed ventilator-induced diaphragm dysfunction (VIDD). Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) signaling pathways may elicit sepsis-related acute inflammatory responses and muscle protein degradation and mediate the pathogenic mechanisms of VIDD.

View Article and Find Full Text PDF

Periodontal disease may cause considerable destruction of alveolar bone, periodontal ligaments (PDLs) and cementum and even lead to progressive oral dysfunction. Periodontal tissue regeneration is the ultimate goal of periodontal disease treatment to reconstruct both structures and functions. However, the regenerative efficiency is low, possibly due to the lack of a proper periodontal microenvironment.

View Article and Find Full Text PDF

Background: Hypoxia preconditioning has been proven to be an effective method to enhance the therapeutic action of mesenchymal stem cells (MSCs). However, the beneficial effects of hypoxic MSCs in ischemia/reperfusion (I/R) lung injury have yet to be investigated. In this study, we hypothesized that the administration of hypoxic MSCs would have a positive therapeutic impact on I/R lung injury at molecular, cellular, and functional levels.

View Article and Find Full Text PDF

Mechanical ventilation (MV) used in patients with acute respiratory distress syndrome (ARDS) can increase lung inflammation and pulmonary fibrogenesis. Src is crucial in mediating the transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) during the fibroproliferative phase of ARDS. Nintedanib, a multitargeted tyrosine kinase inhibitor that directly blocks Src, has been approved for the treatment of idiopathic pulmonary fibrosis.

View Article and Find Full Text PDF

Background: Mechanical ventilation (MV) used in patients with acute respiratory distress syndrome (ARDS) can cause diffuse lung inflammation, an effect termed ventilator-induced lung injury, which may produce profound pulmonary fibrogenesis. Histone deacetylases (HDACs) and serine/threonine kinase/protein kinase B (Akt) are crucial in modulating the epithelial-mesenchymal transition (EMT) during the reparative phase of ARDS; however, the mechanisms regulating the interactions among MV, EMT, HDACs, and Akt remain unclear. We hypothesized that trichostatin A (TSA), a HDAC inhibitor, can reduce MV-augmented bleomycin-induced EMT by inhibiting the HDAC4 and Akt pathways.

View Article and Find Full Text PDF

Background: Fabry disease (FD) is a lysosomal storage disease in which glycosphingolipids (GB3) accumulate in organs of the human body, leading to idiopathic hypertrophic cardiomyopathy and target organ damage. Its pathophysiology is still poorly understood.

Objectives: We aimed to generate patient-specific induced pluripotent stem cells (iPSC) from FD patients presenting cardiomyopathy to determine whether the model could recapitulate key features of the disease phenotype and to investigate the energy metabolism in Fabry disease.

View Article and Find Full Text PDF

Fabry disease (FD) is an X-linked inherited lysosomal storage disease caused by α-galactosidase A (GLA) deficiency. Progressive intracellular accumulation of globotriaosylceramide (Gb3) is considered to be pathogenically responsible for the phenotype variability of FD that causes cardiovascular dysfunction; however, molecular mechanisms underlying the impairment of FD-associated cardiovascular tissues remain unclear. In this study, we reprogrammed human induced pluripotent stem cells (hiPSCs) from peripheral blood cells of patients with FD (FD-iPSCs); subsequently differentiated them into vascular endothelial-like cells (FD-ECs) expressing CD31, VE-cadherin, and vWF; and investigated their ability to form vascular tube-like structures.

View Article and Find Full Text PDF

Rationale: A high incidence of GLA IVS4+919 G>A mutation in patients with Fabry disease of the later-onset cardiac phenotype, has been reported in Taiwan. However, suitable biomarkers or potential therapeutic surrogates for Fabry cardiomyopathy (FC) in such patients under enzyme replacement treatment (ERT) remain unknown.

Objective: Using FC patients carrying IVS4+919 G>A mutation, we constructed an induced pluripotent stem cell (iPSC)-based disease model to investigate the pathogenetic biomarkers and potential therapeutic targets in ERT-treated FC.

View Article and Find Full Text PDF