An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFWe report on an electronic structure change of single-walled carbon nanotube (SWNT) on hexagonal boron nitride due to electron doping via high-pressure H exposure. The fractional coverage of hydrogenated carbon atom is estimated to be at least θ = 0.163 from the in situ I -V measurements of the release process.
View Article and Find Full Text PDFTuning the charge carrier density of two-dimensional (2D) materials by incorporating dopants into the crystal lattice is a challenging task. An attractive alternative is the surface transfer doping by adsorption of molecules on 2D crystals, which can lead to ordered molecular arrays. However, such systems, demonstrated in ultra-high vacuum conditions (UHV), are often unstable in ambient conditions.
View Article and Find Full Text PDFLarge-area growth of monolayer films of the transition metal dichalcogenides is of the utmost importance in this rapidly advancing research area. The mechanical exfoliation method offers high quality monolayer material but it is a problematic approach when applied to materials that are not air stable. One important example is 1T'-WTe, which in multilayer form is reported to possess a large non saturating magnetoresistance, pressure induced superconductivity, and a weak antilocalization effect, but electrical data for the monolayer is yet to be reported due to its rapid degradation in air.
View Article and Find Full Text PDFUsing magneto transport, we probe hopping length scales in the variable range hopping conduction of carbonized polyacetylene and polyaniline nanofibers. In contrast to pristine polyacetylene nanofibers that show vanishing magneto conductance at large electric fields, carbonized polymer nanofibers display a negative magneto conductance that decreases in magnitude but remains finite with respect to the electric field. We show that this behavior of magneto conductance is an indicator of the electric field and temperature dependence of hopping length in the gradual transition from the thermally activated to the activation-less electric field driven variable range hopping transport.
View Article and Find Full Text PDFWe induce dramatic changes in the structure of conducting polymer nanofibers by carbonization at 800 °C and compare charge transport properties between carbonized and pristine nanofibers. Despite the profound structural differences, both types of systems display power law dependence of current with voltage and temperature, and all measurements can be scaled into a single universal curve. We analyze our experimental data in the framework of variable range hopping and argue that this mechanism can explain transport properties of pristine polymer nanofibers as well.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2016
We have developed a scalable fabrication process for the production of DNA biosensors based on gold nanoparticle-decorated graphene field effect transistors (AuNP-Gr-FETs), where monodisperse AuNPs are created through physical vapor deposition followed by thermal annealing. The FETs are created in a four-probe configuration, using an optimized bilayer photolithography process that yields chemically clean devices, as confirmed by XPS and AFM, with high carrier mobility (3590 ± 710 cm/V·s) and low unintended doping (Dirac voltages of 9.4 ± 2.
View Article and Find Full Text PDFAdvanced design of nanostructured functional carbon materials for use in sustainable energy storage systems suffers from complex fabrication procedures and the use of special methods and/or expensive precursors, limiting their practical applications. In this study, nanoporous carbon nanosheets (NP-CNSs) containing numerous redox-active heteroatoms (C/O and C/N ratios of 5.5 and 34.
View Article and Find Full Text PDFPyroprotein-based carbon nanoplates are fabricated from self-assembled silk proteins as a versatile platform to examine sodium-ion storage characteristics in various carbon environments. It is found that, depending on the local carbon structure, sodium ions are stored via chemi-/physisorption, insertion, or nanoclustering of metallic sodium.
View Article and Find Full Text PDFThe realization of long, aligned molecular wires is a great challenge, and a variety of approaches have been proposed. Interestingly, hexapentyloxytriphenylene (HAT5) discotic liquid crystal molecules, a model system of molecules with flat and aromatic cores, can spontaneously form well-aligned, micrometer long, yet only tens of nanometers thick, nanowires on solid surfaces. We have investigated the formation mechanism of these wires using different solvents with selected characteristics, including chemical structure, boiling point, vapor pressure, and surface tension.
View Article and Find Full Text PDFThe use of graphene and other two-dimensional materials in next-generation electronics is hampered by the significant damage caused by conventional lithographic processing techniques employed in device fabrication. To reduce the density of defects and increase mobility, Joule heating is often used since it facilitates lattice reconstruction and promotes self-repair. Despite its importance, an atomistic understanding of the structural and electronic enhancements in graphene devices enabled by current annealing is still lacking.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2015
The nanostructure design of porous carbon-based electrode materials is key to improving the electrochemical performance of supercapacitors. In this study, hierarchically porous carbon nanosheets (HP-CNSs) were fabricated using waste coffee grounds by in situ carbonization and activation processes using KOH. Despite the simple synthesis process, the HP-CNSs had a high aspect ratio nanostructure (∼20 nm thickness to several micrometers in lateral size), a high specific surface area of 1945.
View Article and Find Full Text PDFCVD graphene devices on stacked CVD hexagonal boron nitride (hBN) are demonstrated using a novel low-contamination transfer method, and their electrical performance is systematically compared to devices on SiO(2). An order of magnitude improvement in mobility, sheet resistivity, current density, and sustained power is reported when the oxide substrate is covered with five-layer CVD hBN.
View Article and Find Full Text PDFGraphene nanoribbons (GNRs) are promising candidates for next generation integrated circuit (IC) components; this fact motivates exploration of the relationship between crystallographic structure and transport of graphene patterned at IC-relevant length scales (<10 nm). We report on the controlled fabrication of pristine, freestanding GNRs with widths as small as 0.7 nm, paired with simultaneous lattice-resolution imaging and electrical transport characterization, all conducted within an aberration-corrected transmission electron microscope.
View Article and Find Full Text PDFWe have developed a novel, all-electronic biosensor for opioids that consists of an engineered μ-opioid receptor protein, with high binding affinity for opioids, chemically bonded to a graphene field-effect transistor to read out ligand binding. A variant of the receptor protein that provided chemical recognition was computationally redesigned to enhance its solubility and stability in an aqueous environment. A shadow mask process was developed to fabricate arrays of hundreds of graphene transistors with average mobility of ∼1500 cm(2) V(-1) s(-1) and yield exceeding 98%.
View Article and Find Full Text PDFNovel carbon-based microporous nanoplates containing numerous heteroatoms (H-CMNs) are fabricated from regenerated silk fibroin by the carbonization and activation of KOH. The H-CMNs exhibit superior electrochemical performance, displaying a specific capacitance of 264 F/g in aqueous electrolytes, a specific energy of 133 Wh/kg, a specific power of 217 kW/kg, and a stable cycle life over 10000 cycles.
View Article and Find Full Text PDFStudies of the interaction between hydrogen and graphene have been increasingly required due to the indispensable modulation of the electronic structure of graphene for device applications and the possibility of using graphene as a hydrogen storage material. Here, we report on the behaviour of molecular hydrogen on graphene using the gate voltage-dependent resistance of single-, bi-, and multi-layer graphene sheets as a function of H₂ gas pressure up to 24 bar from 300 K to 345 K. Upon H₂ exposure, the charge neutrality point shifts toward the negative gate voltage region, indicating n-type doping, and distinct Raman signature changes, increases in the interlayer distance of multi-layer graphene, and a decrease in the d-spacing occur, as determined by TEM.
View Article and Find Full Text PDFReduced graphene oxide nanoribbon fibers were fabricated by using an electrophoretic self-assembly method without the use of any polymer or surfactant. We report electrical and field emission properties of the fibers as a function of reduction degree. In particular, the thermally annealed fiber showed superior field emission performance with a low potential for field emission (0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2012
A strategy for enhancing the heating performance of freestanding carbon nanotube (CNT) sheet is presented that involves decorating the sheet with granular-type palladium (Pd) particles. When Pd is added to the sheet, the heating efficiency of CNT sheet is increased by a factor of 3.6 (99.
View Article and Find Full Text PDFSeveral new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor.
View Article and Find Full Text PDFThe magneto resistance (MR) of polyacetylene nanofibers is reviewed in this tutorial review. Earlier MR results on film types of polyacetylene and other conducting polymers are summarized first and then recent progress on the synthesis and characterization of conducting polymer nanofibers and tubes are surveyed. The studies on the dispersion and the MR measurements as well as the recent discovery of the vanishing magneto resistance (VMR) of polyacetylene nanofibers in high electric fields are reviewed.
View Article and Find Full Text PDFPure macroscopic single-walled-carbon-nanotube (SWNT) fibers are fabricated by using a dip-coating method without any additive or additional electrical equipment or complex apparatus. The present method only utilizes microfluidics, which includes capillary condensation, capillary flow, and surface tension, and results in the self-assembly and self-alignment of SWNT colloids.
View Article and Find Full Text PDF