Publications by authors named "Yung S Kim"

Tin-lead (Sn-Pb) perovskite solar cells (PSCs) hold considerable potential for achieving efficiencies near the Shockley-Queisser (S-Q) limit. Notably, the inverted structure stands as the preferred fabrication method for the most efficient Sn-Pb PSCs. In this regard, it is imperative to implement a strategic customization of the hole selective layer to facilitate carrier extraction and refine the quality of perovskite films, which requires effective hole selectivity and favorable interactions with Sn-Pb perovskites.

View Article and Find Full Text PDF

Emerging human pluripotent stem cell (hPSC)-based embryo models are useful for studying human embryogenesis. Particularly, there are hPSC-based somitogenesis models using free-floating culture that recapitulate somite formation. Somitogenesis in vivo involves intricately orchestrated biochemical and biomechanical events.

View Article and Find Full Text PDF

The anterior-posterior axis of the mammalian embryo is laid down by the anterior visceral endoderm (AVE), an extraembryonic signaling center that is specified within the visceral endoderm. Current models posit that AVE differentiation is promoted globally by epiblast-derived Nodal signals, and spatially restricted by a BMP gradient established by the extraembryonic ectoderm. Here, we report spatially restricted AVE differentiation in bilayered embryo-like aggregates made from mouse embryonic stem cells that lack an extraembryonic ectoderm.

View Article and Find Full Text PDF

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles.

View Article and Find Full Text PDF

Emerging human pluripotent stem cell (hPSC)-based embryo models are useful for studying human embryogenesis. Particularly, there are hPSC-based somitogenesis models using free-floating culture that recapitulate somite formation. Somitogenesis involves intricately orchestrated bio-chemical and -mechanical events.

View Article and Find Full Text PDF

This research explores the alteration of metal-organic frameworks (MOFs) using a method called postsynthetic metal exchange. We focus on the shift from a Zn-based MOF containing a [ZnO(COO)] secondary building unit (SBU) of octahedral site symmetry (ANT-1(Zn)) to a Fe-based one with a [FeO(COO)] SBU of trigonal prismatic site symmetry (ANT-1(Fe)). The symmetry-mismatched SBU transformation cleverly maintains the MOF's overall structure by adjusting the conformation of the flexible 1,3,5-benzenetribenzoate linker to alleviate the framework strain.

View Article and Find Full Text PDF

The coupling between the symmetric (νs) and antisymmetric (νa) OD stretch modes of monomeric D2O in CHCl3 is investigated using polarization-dependent two-dimensional infrared (2D IR) spectroscopy supported by numerical 2D IR simulations based on the exciton-band theory. The relationship between the local modes' and the exciton states' parameters is systematically studied, including center frequencies, diagonal anharmonicities, coupling, and off-diagonal anharmonicity. The mean coupling between νs and νa is accurately evaluated to be -49.

View Article and Find Full Text PDF

α,β-Unsaturated ketones are common feedstocks for the synthesis of fine chemicals, pharmaceuticals, and natural products. Transition metal-catalysed hydroacylation reactions of alkynes using aldehydes have been recognised as an atom-economical route to access α,β-unsaturated ketones through chemoselective aldehydic C-H activation. However, the previously reported hydroacylation reactions using rhodium, cobalt, or ruthenium catalysts require chelating moiety-bearing aldehydes to prevent decarbonylation of acyl-metal-hydride complexes.

View Article and Find Full Text PDF
Article Synopsis
  • The development of alkylammonium lead trihalide perovskite (ALHP) photovoltaics has surged recently, but challenges like proton defects threaten their stability.
  • Strategies such as using ionized halides in the precursor solution help reduce these defects by facilitating proton transfer, thus stabilizing the ALHP crystals.
  • The study employs various advanced techniques to analyze ALHP and its precursors, aiming to enhance the stability and efficiency of ALHP-based optoelectronic devices.
View Article and Find Full Text PDF

Two fundamental elements of pre-implantation embryogenesis are cells' intrinsic self-organization program and their developmental plasticity, which allows embryos to compensate for alterations in cell position and number; yet, these elements are still poorly understood. To be able to decipher these features, we established culture conditions that enable the two fates of blastocysts' extraembryonic lineages-the primitive endoderm and the trophectoderm-to coexist. This plasticity emerges following the mechanisms of the first lineage segregation in the mouse embryo, and it manifests as an extended potential for extraembryonic chimerism during the pre-implantation embryogenesis.

View Article and Find Full Text PDF

The complex architecture of the murine fetus originates from a simple ball of pluripotent epiblast cells, which initiate morphogenesis upon implantation. In turn, this establishes an intermediate state of tissue-scale organization of the embryonic lineage in the form of an epithelial monolayer, where patterning signals delineate the body plan. However, how this major morphogenetic process is orchestrated on a cellular level and synchronized with the developmental progression of the epiblast is still obscure.

View Article and Find Full Text PDF

As the early mouse embryo develops, fundamental steps include the sequential formation of the first lumens in the murine conceptus. The first cavity established in the pre-implantation embryo is the blastocoel, followed by the emergence of the proamniotic cavity during the peri-implantation stages. The mouse embryo is a dynamic system which switches its modes of lumenogenesis before and after implantation.

View Article and Find Full Text PDF

Ionic electrolytes are known to form various complexes which exist in dynamic equilibrium in a low dielectric medium. However, structural characterization of these complexes has always posed a great challenge to the scientific community. An additional challenge is the estimation of the dynamic association-dissociation time scales (lifetime of the complexes), which are key to the fundamental understanding of ion transport.

View Article and Find Full Text PDF

Amyloid proteins, which aggregate to form highly ordered structures, play a crucial role in various disease pathologies. Despite many previous studies on amyloid fibrils, which are an end product of protein aggregation, the structural characteristics of amyloid proteins in the early stage of aggregation and their related aggregation mechanism still remain elusive. The role of the amino acid sequence in the aggregation-prone structures of amyloid proteins at such a stage is not understood.

View Article and Find Full Text PDF

A metal-organic framework (MOF) having superprotonic conductivity, MOF-808, is prepared by modulating the binding mode of the sulfamate (SA) moieties grafted onto the metal clusters. The activation of the SA-grafted MOF-808 at 150 °C changes the binding mode of the grafted SA from monodentate to bridging bidentate, thus converting the neutral amido (-S-NH ) moiety of the grafted SA to the more acidic cationic sulfiliminium (-S=NH ) moiety. Further, the acidic sulfiliminium moiety of MOF-808-4SA-150 results in more efficient proton conduction than the amido moiety of MOF-808-4SA-60.

View Article and Find Full Text PDF

During the peri-implantation stages, the mouse embryo radically changes its appearance, transforming from a hollow-shaped blastocyst to an egg cylinder. At the same time, the epiblast gets reorganized from a simple ball of cells to a cup-shaped epithelial monolayer enclosing the proamniotic cavity. However, the cavity's function and mechanism of formation have so far been obscure.

View Article and Find Full Text PDF

The epiblast, which provides the foundation of the future body, is actively reshaped during early embryogenesis, but the reshaping mechanisms are poorly understood. Here, using a 3D in vitro model of early epiblast development, we identify the canonical Wnt/β-catenin pathway and its central downstream factor Esrrb as the key signalling cascade regulating the tissue-scale organization of the murine pluripotent lineage. Although in vivo the Wnt/β-catenin/Esrrb circuit is dispensable for embryonic development before implantation, autocrine Wnt activity controls the morphogenesis and long-term maintenance of the epiblast when development is put on hold during diapause.

View Article and Find Full Text PDF

Obtaining high-quality 2D IR spectra of heterogeneous samples such as perovskite films or metal-organic framework powder is hampered by severe light scattering. In the pump-probe (PP) method, this problem can be circumvented by phase cycling. However, in the heterodyned photon echo (HPE) method, phase cycling does not function as effectively as the PP method.

View Article and Find Full Text PDF

Ion-specific effects on peptides and proteins are key to biomolecular structure and stability. The subtle roles of the cations are far less understood, compared to the pronounced effects of the anions on proteins. Most importantly, divalent cations such as Ca and Mg are crucial to several biological functions.

View Article and Find Full Text PDF

Mammalian embryogenesis is intrauterine and depends on support from the maternal environment. Therefore, in order to directly study and manipulate early mouse and human embryos, fine-tuned culture conditions have to be provided to maintain embryo growth in vitro. Over time, the establishment and implementation of embryo culture methods have come a long way, initially enabling the development of few pre-implantation stages, expanding later to support in vitro embryogenesis from fertilization until blastocyst and even ex utero development beyond the implantation stages.

View Article and Find Full Text PDF

The addition of chemical additives is considered as a promising approach for obtaining high-quality perovskite films under mild conditions, which is essential for both the efficiency and the stability of organic-inorganic hybrid perovskite solar cells (PeSCs). Although such additive engineering yields high-quality films, the inherent insulating property of the chemical additives prevents the efficient transport and extraction of charge carriers, thereby limiting the applicability of this approach. Here, it is shown that organic conjugated molecules having rhodanine moieties (i.

View Article and Find Full Text PDF

Molecular structure and function depend on myriad noncovalent interactions. However, the weak and transient nature of noncovalent interactions in solution makes them challenging to study. Information on weak interactions is typically derived from theory and indirect structural data.

View Article and Find Full Text PDF

As viscous hydroxylic organic compounds, diols are of interest for their functional molecular conformation, which is based on inter- and intramolecular hydrogen (H)-bonds. By utilising steady-state electronic and vibrational spectroscopy, time-resolved fluorescence spectroscopy, and computational analyses, we report the association of the hydroxyl groups of diols via intra- or intermolecular H-bonds to enhance their reactivity as a base. Whereas the formation of an intermolecularly H-bonded dimer is requisite for diols of weak intramolecular H-bond to extract a proton from a model strong photoacid, a well-configured single diol molecule with an optimised intramolecular H-bond is revealed to serve as an effective Brønsted base with increased basicity.

View Article and Find Full Text PDF

Cosolvents have versatile composition-dependent applications in chemistry and biology. The simultaneous presence of hydrophobic and hydrophilic groups in dimethyl sulfoxide (DMSO), an industrially important amphiphilic cosolvent, when combined with the unique properties of water, plays key roles in the diverse fields of pharmacology, cryoprotection, and cell biology. Moreover, molecules dissolved in aqueous DMSO exhibit an anomalous concentration-dependent nonmonotonic behavior in stability and activity near a critical DMSO mole fraction of 0.

View Article and Find Full Text PDF