Objective: To test whether the mucus layer, luminal digestive enzymes, and intestinal mast cells are critical components in the pathogenesis of trauma shock-induced gut and lung injury.
Background: Gut origin sepsis studies have highlighted the importance of the systemic component (ischemia-reperfusion) of gut injury, whereas the intraluminal component is less well studied.
Methods: In rats subjected to trauma hemorrhagic shock (T/HS) or sham shock, the role of pancreatic enzymes in gut injury was tested by diversion of pancreatic enzymes via pancreatic duct exteriorization whereas the role of the mucus layer was tested via the enteral administration of a mucus surrogate.
Background: Lactoferrin (LF) is a pleiotropic glycoprotein that is found in bodily secretions and is postulated to enhance the gastrointestinal barrier and promote mucosal immunity. Thus, the ability of talactoferrin, an oral recombinant form of human LF, to limit gut injury and the production of biologically active gut-derived products was tested using a rat model of trauma-hemorrhagic shock (T/HS).
Methods: Male rats were orally dosed with vehicle or talactoferrin (1000 mg/kg, every day) for 5 d before being subjected to T/HS or trauma-sham shock (T/SS).