A sequence of Schiff base Cobalt (II) Mobile Composite Matter 41 heterojunction (SBCo(II)-MCM 41) was prepared by post-synthetic protocols. Various characterization techniques were used to characterize the above samples and MCM 41: Morphology, functional groups, optical properties, crystalline nature, pore diameter, and binding energy by scanning electron microscope (SEM), High-resolution transition electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FTIR), Ultra Violet-Visible Spectroscopy (UV), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) and X-ray Photoelectron Spectroscopy (XPS). After the encapsulation of SBCo(II) on the MCM 41, the intensity in the 100-plane in powder x-ray diffraction (XRD) decreased significantly; moreover, the light absorption behavior in UV analysis was improved.
View Article and Find Full Text PDFOrganic semiconductors are key building blocks for future electronic devices that require unprecedented properties of low-weight, flexibility, and portability. However, the low charge-carrier mobility and undesirable processing conditions limit their compatibility with low-cost, flexible, and printable electronics. Here, we present significantly enhanced field-effect mobility (μ(FET)) in semiconducting polymers mixed with boron-doped carbon nanotubes (B-CNTs).
View Article and Find Full Text PDFWe present our investigation results on the origin of the morphological defects on graphene films synthesized by chemical vapor deposition method on nickel catalytic substrates. These defects are small-base-area (SBA) peaks with tens of nanometer heights, and they diminish the applicability of graphene films. From atomic force microscopy observations on the graphene films prepared in various ways, we found that significant portion of the SBA peaks is formed in the crevices on the nickel substrates.
View Article and Find Full Text PDFGraphene has attracted substantial attention due to its advantageous materialistic applicability. In the present study, we tested the biocompatibility of graphene films synthesized by chemical vapor deposition with electrogenic primary adult cardiac cells (cardiomyocytes) by measuring the cell properties such as cell attachment, survival, contractility and calcium transients. The results show that the graphene films showed stable cell attachment and excellent biocompatibility with the electrogenic cardiomyocytes, suggesting their useful applications for future cell biology studies.
View Article and Find Full Text PDFA highly flexible and transparent transistor is developed based on an exfoliated MoS2 channel and CVD-grown graphene source/drain electrodes. Introducing the 2D nanomaterials provides a high mechanical flexibility, optical transmittance (∼74%), and current on/off ratio (>10(4)) with an average field effect mobility of ∼4.7 cm(2) V(-1) s(-1), all of which cannot be achieved by other transistors consisting of a MoS2 active channel/metal electrodes or graphene channel/graphene electrodes.
View Article and Find Full Text PDFWe investigated the charge dynamics of the conductivity enhancement from 2 to 1000 S/cm in poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) as induced by structural changes through the addition of a polar solvent and the following solvent bath treatment. Our results indicate that the addition of a polar solvent selectively enhanced the π-π coupling of the polymer chains, resulting in the reduction of disorder and tremendously increasing the charge carrier mobility, which yielded an insulator-to-metal transition. In contrast, the following solvent bath treatment selectively enhanced the intergrain coupling, which did not affect the disorder or the mobility but increased the charge carrier density.
View Article and Find Full Text PDFGraphene is a promising next-generation conducting material with the potential to replace traditional electrode materials such as indium tin oxide in electrical and optical devices. It combines several advantageous characteristics including low sheet resistance, high optical transparency and excellent mechanical properties. Recent research has coincided with increased interest in the application of graphene as an electrode material in transistors, light-emitting diodes, solar cells and flexible devices.
View Article and Find Full Text PDFThermal stability is an important property of graphene that requires thorough investigation. This study reports the thermal stability of graphene films synthesized by chemical vapor deposition (CVD) on catalytic nickel substrates in a reducing atmosphere. Electron microscopies, atomic force microscopy, and Raman spectroscopy, as well as electronic measurements, were used to determine that CVD-grown graphene films are stable up to 700 °C.
View Article and Find Full Text PDFWe investigated the enhanced photoresponse of ZnO nanowire transistors that was introduced with surface-roughness-induced traps by a simple chemical treatment with isopropyl alcohol (IPA). The enhanced photoresponse of IPA-treated ZnO nanowire devices is attributed to an increase in adsorbed oxygen on IPA-induced surface traps. The results of this study revealed that IPA-treated ZnO nanowire devices displayed higher photocurrent gains and faster photoswitching speed than transistors containing unmodified ZnO nanowires.
View Article and Find Full Text PDFLarge-area graphene films, synthesized by the chemical vapor deposition (CVD) method, have the potential to be used as electrodes. However, the electrical properties of CVD-synthesized graphene films fall short of the best results obtained for graphene films prepared by other methods. Therefore, it is important to understand the reason why these electrical properties are inferior to improve the applicability of CVD-grown graphene films.
View Article and Find Full Text PDFThis work demonstrates a large-scale batch fabrication of GaN light-emitting diodes (LEDs) with patterned multi-layer graphene (MLG) as transparent conducting electrodes. MLG films were synthesized using a chemical vapor deposition (CVD) technique on nickel films and showed typical CVD-synthesized MLG film properties, possessing a sheet resistance of [Formula: see text] with a transparency of more than 85% in the 400-800 nm wavelength range. The MLG was applied as the transparent conducting electrodes of GaN-based blue LEDs, and the light output performance was compared to that of conventional GaN LEDs with indium tin oxide electrodes.
View Article and Find Full Text PDFWe demonstrated a controllable tuning of the electronic characteristics of ZnO nanowire field effect transistors (FETs) using a high-energy proton beam. After a short proton irradiation time, the threshold voltage shifted to the negative gate bias direction with an increase in the electrical conductance, whereas the threshold voltage shifted to the positive gate bias direction with a decrease in the electrical conductance after a long proton irradiation time. The electrical characteristics of two different types of ZnO nanowires FET device structures in which the ZnO nanowires are placed on the substrate or suspended above the substrate and photoluminescence (PL) studies of the ZnO nanowires provide substantial evidence that the experimental observations result from the irradiation-induced charges in the bulk SiO(2) and at the SiO(2)/ZnO nanowire interface, which can be explained by a surface-band-bending model in terms of gate electric field modulation.
View Article and Find Full Text PDFWe report on the adjustment of the operation voltage in ZnO nanowire field effect transistors (FETs) by a simple solvent treatment. We have observed that by submerging ZnO nanowires in isopropyl alcohol (IPA), the surface of the ZnO nanowires is etched, generating surface roughness, and their defect emission peak becomes stronger. In particular, ZnO nanowire FETs before IPA treatment operate in the depletion-mode, but are converted to the enhancement-mode with a positive shift of threshold voltage after submersion in IPA.
View Article and Find Full Text PDFBall-shaped atomic force microscope (AFM) tips (ball tips) are useful in AFM metrology, particularly in critical dimension AFM metrology and in micro-tribology. However, a systematic fabrication method for nano-scale ball tips has not been reported. We report that nano-scale ball tips can be fabricated by ion-beam-induced deposition (IBID) of Pt at the free end of multiwall carbon nanotubes that are attached to AFM tips.
View Article and Find Full Text PDFMulti-wall carbon nanotube (MWNT) attached atomic force microscope (AFM) tips (MWNT tips) have good potential for use in AFM lithography. Good conducting MWNT tips are needed in such applications. However, characterizing the conductance of MWNT tips is nontrivial: making a good electrical contact between the MWNT and electrode is difficult.
View Article and Find Full Text PDF