Nuclear translocation of EGFR has been shown to be important for tumor cell growth, survival, and therapeutic resistance. Previously, we detected the association of EGFR with Keap1 in the nucleus. Keap1 is a Kelch-like ECH-associated protein, which plays an important role in cellular response to chemical and oxidative stress by regulating Nrf2 protein stability and nuclear translocation.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are generated by two-step processing to yield small RNAs that negatively regulate target gene expression at the post-transcriptional level. Deregulation of miRNAs has been linked to diverse pathological processes, including cancer. Recent studies have also implicated miRNAs in the regulation of cellular response to a spectrum of stresses, such as hypoxia, which is frequently encountered in the poorly angiogenic core of a solid tumour.
View Article and Find Full Text PDFConserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems.
View Article and Find Full Text PDFProgressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell's inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres.
View Article and Find Full Text PDFSpinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine tract in ataxin-1 (ATXN1). SCA1 pathogenesis studies support a model in which the expanded glutamine tract causes toxicity by modulating the normal activities of ATXN1. To explore native interactions that modify the toxicity of ATXN1, we generated a targeted duplication of the mouse ataxin-1-like (Atxn1l, also known as Boat) locus, a highly conserved paralog of SCA1, and tested the role of this protein in SCA1 pathology.
View Article and Find Full Text PDFSpinocerebellar ataxia type 1 (SCA1) is one of several neurodegenerative diseases caused by expansion of a polyglutamine tract in the disease protein, in this case, ATAXIN-1 (ATXN1). A key question in the field is whether neurotoxicity is mediated by aberrant, novel interactions with the expanded protein or whether its wild-type functions are augmented to a deleterious degree. We examined soluble protein complexes from mouse cerebellum and found that the majority of wild-type and expanded ATXN1 assembles into large stable complexes containing the transcriptional repressor Capicua.
View Article and Find Full Text PDFCHIP (C terminus of Hsc-70 interacting protein) is an E3 ligase that links the protein folding machinery with the ubiquitin-proteasome system and has been implicated in disorders characterized by protein misfolding and aggregation. Here we investigate the role of CHIP in protecting from ataxin-1-induced neurodegeneration. Ataxin-1 is a polyglutamine protein whose expansion causes spinocerebellar ataxia type-1 (SCA1) and triggers the formation of nuclear inclusions (NIs).
View Article and Find Full Text PDFSpinocerebellar ataxia type 1 (SCA1) is one of several neurological disorders caused by a CAG repeat expansion. In SCA1, this expansion produces an abnormally long polyglutamine tract in the protein ataxin-1. Mutant polyglutamine proteins accumulate in neurons, inducing neurodegeneration, but the mechanism underlying this accumulation has been unclear.
View Article and Find Full Text PDFDynamin is a GTPase protein that is essential for clathrin-mediated endocytosis of synaptic vesicle membranes. The Drosophila dynamin mutation shi(ts1) changes a single residue (G273D) at the boundary of the GTPase domain. In cell fractionation of homogenized fly heads without monovalent cations, all dynamin was in pellet fractions and was minimally susceptible to Triton-X extraction.
View Article and Find Full Text PDF