Publications by authors named "Yunfu Lin"

Almost 20 incurable neurodegenerative disorders are caused by trinucleotide repeat (TNR) expansion beyond a certain threshold, with disease time of onset and severity positively correlating with repeat length. Typically, long TNRs display a bias toward further expansion and repeats continue to expand not only during germline transmissions from parents to offspring, but also remain highly unstable in somatic tissues of patients. Hence, understanding TNR instability mechanisms sheds light on underlying disease pathology.

View Article and Find Full Text PDF

Multiple pathways modulate the dynamic mutability of trinucleotide repeats (TNRs), which are implicated in neurodegenerative disease and evolution. Recently, we reported that environmental stresses induce TNR mutagenesis via stress responses and rereplication, with more than 50% of mutants carrying deletions or insertions-molecular signatures of DNA double-strand break repair. We now show that knockdown of alt-nonhomologous end joining (alt-NHEJ) components-XRCC1, LIG3, and PARP1-suppresses stress-induced TNR mutagenesis, in contrast to the components of homologous recombination and NHEJ, which have no effect.

View Article and Find Full Text PDF

Trinucleotide repeat (TNR) expansion beyond a certain threshold results in some 20 incurable neurodegenerative disorders where disease anticipation positively correlates with repeat length. Long TNRs typically display a bias toward further expansion during germinal transmission from parents to offspring, and then are highly unstable in somatic tissues of affected individuals. Understanding mechanisms of TNR instability will provide insights into disease pathogenesis.

View Article and Find Full Text PDF

The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells.

View Article and Find Full Text PDF

Microsatellite sequences, composed of short tandem repeats and randomly distributed in human genome, can become unstable during various DNA metabolic processes. Expansions of CAG, GAA, CGG and CCTG repeats located in specific genes are responsible for several human disorders. It is known that a major percentage of human genes simultaneously express both sense and antisense transcripts.

View Article and Find Full Text PDF

To investigate whether mammalian cells can carry out recombinational double-strand break (DSB) repair between highly diverged sequences, mouse fibroblasts were transfected with DNA substrates that contained a "recipient" thymidine kinase (tk) gene disrupted by the recognition site for endonuclease I-SceI. Substrates also contained a linked "donor" tk gene sequence. Following DSB induction by I-SceI, selection for tk-expressing clones allowed recovery of repair events occurring by nonhomologous end-joining or recombination with the donor sequence.

View Article and Find Full Text PDF

Double-strand breaks (DSBs), a common type of DNA lesion, occur daily in human cells as a result of both endogenous and exogenous damaging agents. DSBs are repaired in two general ways: by the homology-dependent, error-free pathways of homologous recombination (HR) and by the homology-independent, error-prone pathways of nonhomologous end-joining (NHEJ), with NHEJ predominating in most cells. DSBs with compatible ends can be re-joined in vitro with DNA ligase alone, which raises the question of whether such DSBs require the more elaborate machinery of NHEJ to be repaired in cells.

View Article and Find Full Text PDF

Expansion of CAG•CTG tracts located in specific genes is responsible for 13 human neurodegenerative disorders, the pathogenic mechanisms of which are not yet well defined. These disease genes are ubiquitously expressed in human tissues, and transcription has been identified as one of the major pathways destabilizing the repeats. Transcription-induced repeat instability depends on transcription-coupled nucleotide excision repair (TC-NER), the mismatch repair (MMR) recognition component MSH2/MSH3, and RNA/DNA hybrids (R-loops).

View Article and Find Full Text PDF

Expansion of trinucleotide repeats (TNRs) is responsible for a number of human neurodegenerative disorders. The molecular mechanisms that underlie TNR instability in humans are not clear. Based on results from model systems, several mechanisms for instability have been proposed, all of which focus on the ability of TNRs to form alternative structures during normal DNA transactions, including replication, DNA repair and transcription.

View Article and Find Full Text PDF

Expanded trinucleotide repeats are responsible for a number of neurodegenerative diseases, such as Huntington disease and myotonic dystrophy type 1. The mechanisms that underlie repeat instability in the germ line and in the somatic tissues of human patients are undefined. Using a selection assay based on contraction of CAG repeat tracts in human cells, we screened the Prestwick chemical library in a moderately high-throughput assay and identified 18 novel inducers of repeat contraction.

View Article and Find Full Text PDF

Trinucleotide repeats (TNR) are a blessing and a curse. In coding regions, where they are enriched, short repeats offer the potential for continuous, rapid length variation with linked incremental changes in the activity of the encoded protein, a valuable source of variation for evolution. But at the upper end of these benign and beneficial lengths, trinucleotide repeats become very unstable, with a dangerous bias toward continual expansion, which can lead to neurological diseases in humans.

View Article and Find Full Text PDF

Short repetitive sequences are common in the human genome, and many fall within transcription units. We have previously shown that transcription through CAG repeat tracts destabilizes them in a way that depends on transcription-coupled nucleotide excision repair and mismatch repair. Recent observations that antisense transcription accompanies sense transcription in many human genes led us to test the effects of antisense transcription on triplet repeat instability in human cells.

View Article and Find Full Text PDF

The Hsp90 molecular chaperone has been implicated as a contributor to evolution in several organisms by revealing cryptic variation that can yield dramatic phenotypes when the chaperone is diverted from its normal functions by environmental stress. In addition, as a cancer drug target, Hsp90 inhibition has been documented to sensitize cells to DNA-damaging agents, suggesting a function for Hsp90 in DNA repair. Here we explore the potential role of Hsp90 in modulating the stability of nucleotide repeats, which in a number of species, including humans, exert subtle and quantitative consequences for protein function, morphological and behavioral traits, and disease.

View Article and Find Full Text PDF

Transcription stimulates the genetic instability of trinucleotide repeat sequences. However, the mechanisms leading to transcription-dependent repeat length variation are unclear. We demonstrate, using biochemical and genetic approaches, that the formation of stable RNA.

View Article and Find Full Text PDF

Neuroblastoma is derived from neural crest precursor components of the peripheral sympathetic nervous system and accounts for more than 15% of all pediatric cancer deaths. A clearer understanding of the molecular basis of neuroblastoma is required for novel therapeutic approaches to improve morbidity and mortality. Neuroblastoma is uniformly p53 wild type at diagnosis and must overcome p53-mediated tumor suppression during pathogenesis.

View Article and Find Full Text PDF

Several neurodegerative diseases are caused by expansion of a trinucleotide repeat tract in a critical gene. The mechanism of repeat instability is not yet defined, but in mice it requires MutSbeta, a complex of MSH2 and MSH3. We showed previously that transcription through a CAG repeat tract induces repeat instability in human cells via a pathway that requires the mismatch repair (MMR) components, MSH2 and MSH3, and the entire transcription-coupled nucleotide excision repair pathway [Y.

View Article and Find Full Text PDF

Expanded triplet repeats have been identified as the genetic basis for a growing number of neurological and skeletal disorders. To examine the contribution of double-strand break repair to CAG x CTG repeat instability in mammalian systems, we developed zinc finger nucleases (ZFNs) that recognize and cleave CAG repeat sequences. Engineered ZFNs use a tandem array of zinc fingers, fused to the FokI DNA cleavage domain, to direct double-strand breaks (DSBs) in a site-specific manner.

View Article and Find Full Text PDF

Triplet repeat expansion is the molecular basis for several human diseases. Intensive studies using systems in bacteria, yeast, flies, mammalian cells, and mice have provided important insights into the molecular processes that are responsible for mediating repeat instability. The age-dependent, ongoing repeat instability in somatic tissues, especially in terminally differentiated neurons, strongly suggests a robust role for pathways that are independent of DNA replication.

View Article and Find Full Text PDF

Expanded CAG repeat tracts are the cause of at least a dozen neurodegenerative disorders. In humans, long CAG repeats tend to expand during transmissions from parent to offspring, leading to an earlier age of disease onset and more severe symptoms in subsequent generations. Here, we show that the maintenance DNA methyltransferase Dnmt1, which preserves the patterns of CpG methylation, plays a key role in CAG repeat instability in human cells and in the male and female mouse germlines.

View Article and Find Full Text PDF

Trinucleotide repeat instability is intrinsic to a family of human neurodegenerative diseases. The mechanism leading to repeat length variation is unclear. We previously showed that treatment with the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) dramatically increases triplet repeat instability in mammalian cells.

View Article and Find Full Text PDF

Expansions of CAG repeat tracts in the germ line underlie several neurological diseases. In human patients and mouse models, CAG repeat tracts display an ongoing instability in neurons, which may exacerbate disease symptoms. It is unclear how repeats are destabilized in nondividing cells, but it cannot involve DNA replication.

View Article and Find Full Text PDF

We examined the mechanism by which recombination between imperfectly matched sequences (homeologous recombination) is suppressed in mammalian chromosomes. DNA substrates were constructed, each containing a thymidine kinase (tk) gene disrupted by insertion of an XhoI linker and referred to as a "recipient" gene. Each substrate also contained one of several "donor" tk sequences that could potentially correct the recipient gene via recombination.

View Article and Find Full Text PDF

Induced transcription through CAG repeats in human cells increases repeat contraction approximately 15-fold in both confluent and proliferating cells. Repeats are stabilized against contraction by siRNA knockdown of MSH2, MSH3 or XPA, but not by knockdown of MSH6, XPC or FEN1. These results define a pathway for CAG.

View Article and Find Full Text PDF

CAG.CTG repeat expansions cause more than a dozen neurodegenerative diseases in humans. To define the mechanism of repeat instability in mammalian cells we developed a selectable assay to detect expansions of CAG.

View Article and Find Full Text PDF

We investigated the effect of pifithrin-alpha (PFTalpha), a chemical inhibitor of p53, on DNA double-strand break (DSB) repair in mammalian chromosomes. Thymidine kinase-deficient mouse fibroblasts were stably transfected with DNA substrates containing one or two recognition sites for yeast endonuclease I-SceI embedded within a herpes simplex virus thymidine kinase gene. Genomic DSBs were induced by introducing an I-SceI expression plasmid into cells in the presence or absence of 20 microM PFTalpha.

View Article and Find Full Text PDF