MoCT MXenes have great potential for multifunctional energy storage applications because of their outstanding electrical conductivity, superior cycling stability, and high optical transmittance. In this study, we fabricate MoCT film electrodes (referred to as MoC) on fluorine-doped tin oxide (FTO) substrates using the layer-by-layer (LbL) self-assembly technique. To improve the energy-storage performance of MoCT film electrodes, we develop a convenient electrochemical activation process to prepare in situ oxidized MoCT/MoO film electrodes (referred to as EA-MoC).
View Article and Find Full Text PDFMedical titanium-based (Ti-based) implants in the human body are prone to infection by pathogenic bacteria, leading to implantation failure. Constructing antibacterial nanocoatings on Ti-based implants is one of the most effective strategies to solve bacterial contamination. However, single antibacterial function was not sufficient to efficiently kill bacteria, and it is necessary to develop multifunctional antibacterial methods.
View Article and Find Full Text PDFSimultaneously improving electrochemical activity and stability is a long-term goal for water splitting. Herein, hierarchical N-doped carbon nanotubes on carbon nanowires derived from PPy are grown on carbon cloth, serving as a support for NiCo oxides/sulfides. The hierarchical electrodes annealed in N or H/N display improved intrinsic activity and stability for hydrogen evolution reaction (HER) and glucose oxidation reaction.
View Article and Find Full Text PDFAlthough lots of nanomaterials modified anodes have been reported to improve the bacterial attachment and extracellular electron transfer (EET) in microbial fuel cells (MFCs), the lack of a three dimensional (3D) conductive and capacitive network severely limited MFCs performance. In this work, 3D conductive networks derived from mucor mycelia were grown on carbon cloth (CC), and capacitive FeMn phosphides/oxides were further anchored on these 3D networks by electrochemical deposition (denoted as FeMn/CMM@CC) to simultaneously address the above challenges. As a result, the multivalent metal active sites were evenly distributed on 3D conductive network, which favored the enrichment of exoelectrogens, mass transport and EET.
View Article and Find Full Text PDFPurpose: Small-scale clinical trials have provided evidence suggesting the effectiveness of stem-cell therapy (SCT) for patients diagnosed with Crohn's disease (CD). The objective of the research was to systematically assess the effectiveness and safety of SCT for individuals diagnosed with CD through a comprehensive review and meta-analysis.
Methods: A search was conducted in Medline (PubMed), CENTER (Cochrane Library), and Embase (Ovid) to find randomized controlled trials (RCTs) that assessed the impact of SCT on the occurrence of clinical remission (CR) and severe adverse events (SAE) among patients diagnosed with CD.
Microbial fuel cell (MFC) performance is affected by the metabolic activity of bacteria and the extracellular electron transfer (EET) process. The deficiency of nanostructures on macroporous anode obstructs the enrichment of exoelectrogens and the EET. Herein, a N-doped carbon nanowire-modified macroporous carbon foam was prepared and served as an anode in MFCs.
View Article and Find Full Text PDFIn response to the trend of drug-resistant and super bacteria, the existing single antibacterial methods are not sufficient to kill bacteria, and the development of multifunctional antibacterial nanomaterials is urgent. Our study aims to construct copper-doped polydopamine-coated TiCT (CuPDA@TiCT) with an enhanced photothermal property and Fenton-like activity. The nanocomposite hydrogel consisting of CuPDA@TiCT and alginate can improve the antioxidant activity of two-dimensional MXene nanosheets by coating them with a thin layer of PDA nanofilm.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2023
There has been a growing interest in counting crowds through computer vision and machine learning techniques in recent years. Despite that significant progress has been made, most existing methods heavily rely on fully-supervised learning and require a lot of labeled data. To alleviate the reliance, we focus on the semi-supervised learning paradigm.
View Article and Find Full Text PDFCommonly used dense arrays of nanomaterials on carbon cloth (CC) are not suitable to accommodate microorganisms in microbial fuel cells (MFCs) due to their unmatched size. To simultaneously enrich exoelectrogens and accelerate the extracellular electron transfer (EET) process, SnS nanosheets were selected as sacrificial templates to prepare binder-free N,S-codoped carbon microflowers (N,S-CMF@CC) by polymer coating and pyrolysis. N,S-CMF@CC showed a cumulative total charge of 125.
View Article and Find Full Text PDFIt is urgent to develop non-noble metal electrocatalysts with both excellent activity and durable stability for H production via water electrolysis. Electric energy is mainly consumed by the sluggish anodic oxygen evolution reaction (OER). The electrocatalytic urea oxidation reaction (UOR) has been regarded as a promising reaction to replace OER because of its small thermodynamic oxidation potential.
View Article and Find Full Text PDFMicrobial fuel cells (MFCs) are promising ecofriendly techniques for harvesting bioenergy from organic and inorganic matter. Currently, it is challenging to design MFC anodes with favorable microorganism attachment and fast extracellular electron transfer (EET) rate for high MFC performance. Here we prepared N-doped carbon nanotubes (NCNTs) on carbon felt (CF) and used it as a support for growing hierarchical CoFeS-FeCoO/NCNTs core-shell nanostructures (FeCo/NCNTs@CF).
View Article and Find Full Text PDFChemicals isolated from natural products have been broadly applied in the treatment of colorectal cancer (CRC). Bixin, an apocarotenoid from the seeds of , exerts multiple pharmacological properties, including neuroprotective, anti-inflammatory, cardioprotective, and antitumor effects; yet, the therapeutic effects of Bixin on CRC are still unknown. Here, we described that Bixin treatment significantly inhibited the proliferation and motility of two CRC cell lines (CaCO2 and SW480) in vitro and in vivo.
View Article and Find Full Text PDFBackground: MicroRNA-495 (miR-495) is a post-translational modulator that performs several functions, and it is involved in several disease states. On the other hand, the physiological functions of miR-495 in HO stimulated mouse spinal cord neuronal dysfunction have not yet been fully understood.
Methods: In this study, we speculated that miR-495 may regulate the expression of STAT3 in the processes of neuronal proliferation and apoptosis following spinal cord injury (SCI).
Electrochemical water splitting into hydrogen is a promising strategy for hydrogen production powered by solar energy. However, the cell voltage of an electrolyzer is still too high for practical application, which is mainly limited by the sluggish oxygen evolution reaction process. To this end, hybrid water electrolyzers have drawn tremendous attention.
View Article and Find Full Text PDFH production via electrocatalytic water splitting is greatly hindered by the sluggish oxygen evolution reaction (OER). The urea oxidation reaction (UOR) draws specific attention not only because of its lower theoretical voltage of 0.37 V compared with OER (1.
View Article and Find Full Text PDFPeroxidase nanoenzymes exhibit a specific affinity toward substrates, thereby demonstrating application potential for realizing the colorimetric immunoassays of hydrogen peroxide (HO), which can be further used as a probe for imaging cancer cells. To enhance the intrinsic peroxidase activity of molybdenum sulfide (MoS) nanomaterials, gold (Au) nanoparticles with an average diameter of approximately 2.1 nm were modified on a MoS/carbon surface (denoted as MoS/C-Au) via ascorbic acid reduction.
View Article and Find Full Text PDFRecent discovery of piezoelectricity that existed in two-dimensional (2D) layered materials represents a key milestone for flexible electronics and miniaturized and wearable devices. However, so far the reported piezoelectricity in these 2D layered materials is too weak to be used for any practical applications. In this work, we discovered that grain boundaries (GBs) in monolayer MoS can significantly enhance its piezoelectric property.
View Article and Find Full Text PDFGraphene has drawn tremendous attention for the fabrication of actuators because of its unique chemical and structural features. Traditional graphene actuators need integration with polymers or other responsive components for shape-changeable behaviour. Searching for a sole material with asymmetric properties is difficult and challenging for actuators that are responsive to external stimulus.
View Article and Find Full Text PDFPiezoelectric two-dimensional (2D) van der Waals (vdWs) materials are highly desirable for applications in miniaturized and flexible/wearable devices. However, the reverse-polarization between adjacent layers in current 2D layered materials results in decreasing their in-plane piezoelectric coefficients with layer number, which limits their practical applications. Here, we report a class of 2D layered materials with an identical orientation of in-plane polarization.
View Article and Find Full Text PDFHighly sensitive strain sensors show great potential for use in wearable health monitoring, autonomous intelligent robots and biomimetic prosthetics. The current resistive strain sensors mainly work through piezoresistors. Here, the robust tunneling mechanism based nanoscale strain sensors with high sensitivity are reported.
View Article and Find Full Text PDFSearching for low-cost, high-efficiency, bifunctional, non-noble-metal electrocatalysts for overall water splitting is crucial to renewable energy conversion. Herein, a series of component-controllable CC/CNTs@CoS Se (CC: carbon cloth, CNT: carbon nanotube) with excellent bifunctional properties in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) were obtained by chemical vapor deposition. In this strategy, the Zif-67 precursor served as a structural inducer, which was directly grown on CC and pyrolyzed with the assistance of melamine to form multi-walled CNT-encapsulated CoS Se hierarchical nanostructures.
View Article and Find Full Text PDFMain purpose of present study was to enhance the therapeutic efficacy in the treatment of colon adenocarcinoma by combining the benefits of chemotherapy and gene therapy. In this study, we have successfully formulated oxaliplatin (OXL) and miRNA-204-5p loaded polyethyleneimine (PEI)/hyaluronic acid (HA)-assembled mesoporous silica nanoparticles (OXmi-HSMN). Our study, for the first time, proved that miRNA-204-5p can generate a synergistic anticancer effect with OXL with HMSN, and thus improve the effects of therapeutic efficacy in colon cancers.
View Article and Find Full Text PDFAnti-miR21 and resveratrol (RSV)-loaded mesoporous silica nanoparticles (MSNs) conjugated with hyaluronic acid (HA) were developed to enhance therapeutic efficacy in gastric carcinoma. The surface conjugation of HA, which acts as a targeting ligand to the overexpressed CD44 receptor on gastric cancer cells, was clearly identified by the presence of a greyish shell on the dark MSNs. Confocal laser-scanning microscopy and flow cytometry analysis showed higher cellular internalisation of HA/RSVmirNP compared to RSVmirNP.
View Article and Find Full Text PDFMultifunctional theranostic platforms, especially single component-based platforms, enable both cancer treatment and real-time imaging as well as enhance the efficiency of treatment. In this study, 50 nm Mo2C nanospheres were explored as a "one-for-all" theranostic agent. The light-harvesting of Mo2C covered the entire near infrared region, and NIR irradiation concurrently triggered hyperthermia and reactive oxygen species (ROS) production; thus, synergistic outcomes of photothermal and photodynamic therapy could be realized.
View Article and Find Full Text PDFTwo dimensional (2D) hexagonal boron nitride (h-BN) has attracted extensive attention due to its high thermal and chemical stability, excellent dielectric characteristic, and unique optical properties. However, the chemical vapor deposition synthesis of 2D h-BN is not fully explored, such as morphology regulation and size control. Here we demonstrate the growth of 2D h-BN single domains on Cu/Ni alloy via atmospheric chemical vapor deposition (APCVD).
View Article and Find Full Text PDF