The development of theranostic systems capable of diagnosis, therapy, and target specificity is considerably significant for accomplishing personalized medicine. Here, a multifunctional rattle-type nanoparticle (MRTN) as an effective biological bimodal imaging and tumor-targeting delivery system is fabricated, and an enhanced loading ability of hydrophobic anticancer drug (paclitaxel) is also realized. The rattle structure with hydrophobic Fe3 O4 as the inner core and mesoporous silica as the shell is obtained by one-step templates removal process, and the size of interstitial hollow space can be easily adjusted.
View Article and Find Full Text PDFAs a promising non-viral gene vector, cationic polyamidoamine (PAMAM) dendrimer could form complexes with negative charged DNA to mediate efficient gene delivery in vitro and in vivo. However, complicated synthesis technology and potential cytotoxicity limited their application in clinical translational researches. Hyperbranched polyamidoamine (h-PAMAM), which could be synthesized by a simpler one-pot method, has similar properties with PAMAM, and PEGylation modification of h-PAMAM has been used to reduce cytotoxicity.
View Article and Find Full Text PDFA controlled drug-delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross-linked by the disulfide linker N,N'-bis(acryloyl)cystamine is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses.
View Article and Find Full Text PDF