Publications by authors named "Yunfei Ru"

Many biological organisms possess adaptive friction states and display hysteretic friction recovery, allowing them to achieve specific friction memory after environment change. However, current artificial materials have limitations in maintaining on-demand friction states upon withdrawal of external triggers due to their strong dependence on external stimulus. Here, thermally induced phase separation ionogels with friction memory are reported.

View Article and Find Full Text PDF

Along with the in-depth understanding of wetting behaviors in nature, superwetting gels have received a lot of attention in the past decade. The viscoelasticity of gel materials makes wetting characteristics different from those of rigid materials and brings diverse functionality. In this Review, we summarize the current progress in principles of gel wettability from two aspects: wetting on gels and wetting of gels.

View Article and Find Full Text PDF

Hydrogels with pure hydrophilic network have received much attention due to their excellent low frictional behavior. However, the lubrication performance of hydrogels is not satisfied under high-speed condition due to the energy dissipation caused by adsorbed polymer chains as well as the failure of lubricating mechanisms accompanied by the transition of lubrication regime. In this work, interpenetrating double-network organohydrogels were constructed by combining hydrophilic and oleophilic polymer networks to modify the physiochemical properties of surface polymer chains, especially the chain mobility.

View Article and Find Full Text PDF

Current hydrogel actuators mostly suffer from weak actuation strength and low responsive speed owing to their solvent diffusion-induced volume change mechanism. Here a skeletal muscle-inspired organohydrogel actuator is reported in which solvents are confined in hydrophobic microdomains. Organohydrogel actuator is driven by compartmentalized directional network deformation instead of volume change, avoiding the limitations that originate from solvent diffusion.

View Article and Find Full Text PDF

The rapid development of wearable devices is in urgent demand for materials with switchable adhesion both in air and aqueous environments. Herein, we report a thermoresponsive ionogel with switchable adhesion against various substrates both in air and aqueous environments. The switchable adhesion of ionogels is realized by a phase separation induced collapse of the polymer network and the subsequent extrusion of ionic liquids (ILs) on ionogel surfaces.

View Article and Find Full Text PDF

Synthetic gels with switchable interfacial properties have great potential in smart devices and controllable transport. Herein, we design an organogel by incorporating a binary liquid mixture with an upper critical solution temperature (UCST) into a polymer network, resulting in reversible modulation of lubrication and adhesion properties. As the temperature changes, the lubricating mechanism changes reversibly from boundary lubrication to hydrodynamic lubrication due to phase separation within the binary solution permeating the gel (friction coefficient 0.

View Article and Find Full Text PDF

To promote drop mobility, lubricating the gap between liquid drop and solid surface is a facile method which has been widely exploited by nature. Examples include lotus and rice leaves using entrapped air to "lubricate" water and Nepenthes pitcher plant using a slippery water layer to trap insects. Inspired by these, here, we report a strategy for transporting drop cargoes via the unidirectional spreading of immiscible lubricants on the peristome-mimetic surface.

View Article and Find Full Text PDF