Publications by authors named "Yunfei Huan"

Low-temperature direct ammonia fuel cell (DAFC) stands out as a more secure technology than the hydrogen fuel cell system, while there is still a lack of elegant bottom-up synthesis procedures for efficient ammonia oxidation reaction (AOR) electrocatalysts. The widely accepted d-band center, even with consideration of the d-band width, usually fails to describe variations in AOR reactivity in many practical conditions, and a more accurate activity descriptor is necessary for a less empirical synthesis path. Herein, the upper d-band edge, ε, derived from the d-band model, is identified as an effective descriptor for accurately establishing the descriptor-activity relationship.

View Article and Find Full Text PDF

Electrosynthesis of urea from co-reduction of carbon dioxide and nitrate is a promising alternative to the industrial process. However, the overwhelming existence of proton and nitrate as well as the insufficient supply of CO at the reaction interface usually result in complex product distributions from individual nitrate reduction or hydrogen evolution, instead of C-N coupling. In this work, we systematically optimize this microenvironment through orderly coating of bilayer polymer to specifically tackle the above challenges.

View Article and Find Full Text PDF

Ammonia (NH) electrosynthesis from nitrogen (N) provides a promising strategy for carbon neutrality, circumventing the energy-intensive and carbon-emitting Haber-Bosch process. However, the current system still presents unsatisfactory performance, and the bottleneck lies in the rational synthesis of catalytic centers with efficient N chemisorption ability. Herein, a heteroatom ensemble effect is deliberately triggered over RuFe alloy with spatial proximity of metal sites to promote electrocatalytic nitrogen reduction.

View Article and Find Full Text PDF

The electrochemical conversion of nitrate pollutants into value-added ammonia (NH) is an appealing alternative synthetic route for sustainable NH production. However, the development of the electrocatalytic nitrate-to-ammonia reduction reaction (NORR) has been hampered by unruly reactants and products at the interface and the accompanied sluggish kinetic rate. In this work, a built-in positive valence space is successfully constructed over FeCu nanocrystals to rationally regulate interfacial component concentrations and positively shift the chemical equilibrium.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) have been widely studied in a variety of electrocatalysis. However, its application in the electrocatalytic nitrogen reduction reaction (NRR) field still suffers from unsatisfactory performance, due to the sluggish mass transfer and significant kinetic barriers. Herein, a novel rare-earth-lanthanum-evoked optimization strategy is proposed to boost ambient NRR over SACs.

View Article and Find Full Text PDF

Electrochemical nitrogen reduction reaction (NRR) is a burgeoning field for green and sustainable ammonia production, in which numerous potential catalysts emerge endlessly. However, satisfactory performances are still not realized under practical applications due to the limited solubility and sluggish diffusion of nitrogen at the interface. Herein, molecular imprinting technology is adopted to construct an adlayer with abundant nitrogen imprints on the electrocatalyst, which is capable of selectively recognizing and proactively aggregating high-concentrated nitrogen at the interface while hindering the access of overwhelming water simultaneously.

View Article and Find Full Text PDF