The information of the Gene Ontology annotation is helpful in the explanation of life science phenomena, and can provide great support for the research of the biomedical field. The use of the Gene Ontology is gradually affecting the way people store and understand bioinformatic data. To facilitate the prediction of gene functions with the aid of text mining methods and existing resources, we transform it into a multi-label top-down classification problem and develop a method that uses the hierarchical relationships in the Gene Ontology structure to relieve the quantitative imbalance of positive and negative training samples.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
September 2013
Protein-protein interactions (PPIs) play a key role in various aspects of the structural and functional organization of the cell. Knowledge about them unveils the molecular mechanisms of biological processes. However, the amount of biomedical literature regarding protein interactions is increasing rapidly and it is difficult for interaction database curators to detect and curate protein interaction information manually.
View Article and Find Full Text PDFThe recognition and normalization of gene mentions in biomedical literature are crucial steps in biomedical text mining. We present a system for extracting gene names from biomedical literature and normalizing them to gene identifiers in databases. The system consists of four major components: gene name recognition, entity mapping, disambiguation and filtering.
View Article and Find Full Text PDF