The hematopoietic system is the primary target of benzene exposure. Whether peripheral blood miRNA can serve as sensitive biomarkers for benzene-induced hematopoietic damage has attracted considerable attention. This study focuses on exploring the role of miR-451a and miR-486-5p in benzene-induced erythroid damage and assessing their potential as biomarkers of benzene-induced hematotoxicity.
View Article and Find Full Text PDFA novel near-infrared fluorescent probe TM2 based on a rhodamine-bearing framework was disclosed with a large Stokes shift (100 nm). TM2 exhibits highly selective recognition for Cu in EtOH/HO (1 : 1, v/v) solution with a low detection limit (2.3 μM) and a wide detection range (0-50 μM).
View Article and Find Full Text PDFThe pH of environmental systems plays a crucial role in determining pollutant behavior, necessitating the development of effective tools for real-time monitoring. This study introduces a novel series of lipophilic HPTS derivatives, developed through a two-step synthesis route, designed as pH-sensitive dyes, characterized by high fluorescence intensity, photostability, dual excitation/single emission, and significant Stokes shifts. We engineered self-ratiometric pH-sensing planar optode foils and investigated the impact of carbon chain length on foil durability.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) often faces challenges such as oxygen dependence and limited tumour specificity. We report a tumour-targeting photosensitizer (PS), RuCXB, which enhances uptake by cancer cells by targeting overexpressed cyclooxygenase-2 enzyme in tumours. RuCXB also reduces oxygen dependence a type I PDT mechanism and achieves a strong therapeutic effect through the synergistic induction of ferroptosis and apoptosis.
View Article and Find Full Text PDFAbnormal levels of zinc ions within endo-lysosomes have been implicated in the progression of Alzheimer's disease (AD), yet the detection of low-concentration zinc ions at the organelle level remains challenging. Here we report the design of an endo-lysosome-targeted fluorescent reporter, Znluor, for imaging endogenous zinc ions. Znluor is constructed from an amphiphilic DNA framework (DNF) with programmable size and shape, which can encapsulate zinc-responsive fluorophores within its hydrophobic nanocavity.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Purpose: This study investigated for the HIV-1 CRF59_01B epidemic's spatiotemporal dynamics and its transmission networks in China.
Methods: Between 2007 and 2020, a total of 250 partial pol gene sequences of HIV-1 CRF59_01B were collected from four regions (10 Chinese provinces). Phylogenetic tree construction and cluster identification were then performed.
Hypochlorous acid (HClO) serves as a critical biomarker in inflammatory diseases such as rheumatoid arthritis (RA), and its real-time imaging is essential for understanding its biological functions. In this study, we designed and synthesized a novel probe, RHMB, which ingeniously integrates rhodamine B and methylene blue fluorophores with HClO-specific responsive moieties into a single molecular framework. Upon exposure to HClO, RHMB exhibited significant dual-channel fluorescence enhancement characterized by high sensitivity (LODs of 2.
View Article and Find Full Text PDFSuper-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions.
View Article and Find Full Text PDFGlutamine synthetase (GS) is vital in maintaining ammonia and glutamate (Glu) homeostasis in living organisms. However, the natural enzyme relies on adenosine triphosphate (ATP) to activate Glu, resulting in impaired GS function during ATP-deficient neurotoxic events. To date, no reports demonstrate using artificial nanostructures to mimic GS function.
View Article and Find Full Text PDFAs a new form of regulated cell death, ferroptosis is closely related to various diseases. Tracing ferroptosis related biological behavior is helpful to better understand this process and its related biology. Considering that ferroptosis is featured with remarkable lipid peroxidation which can easily change the membranes' compositions and structures, it is potential to detect intracellular environmental changes for direct assessment of ferroptosis.
View Article and Find Full Text PDFAnti-PD-L1 immunotherapy, a new lung cancer treatment, is limited to a few patients due to low PD-L1 expression and tumor immunosuppression. To address these challenges, the upregulation of PD-L1 has the potential to elevate the response rate and efficiency of anti-PD-L1 and alleviate the immunosuppression of the tumor microenvironment. Herein, we developed a novel usnic acid-derived Iridium(III) complex, , that boosts PD-L1 expression and converts "cold tumors" to "hot".
View Article and Find Full Text PDFNitric oxide (NO) exhibits both pro- and anti-tumor effects. Therefore, real-time in vivo imaging and quantification of tumor NO dynamics are essential for understanding the conflicting roles of NO played in pathophysiology. The current molecular probes, however, cannot provide high-resolution imaging in deep tissues, making them unsuitable for these purposes.
View Article and Find Full Text PDFMitochondria are essential for a diverse array of biological functions. There is increasing research focus on developing efficient tools for mitochondria-targeted detection and treatment. BODIPY dyes, known for their structural versatility and excellent spectroscopic properties, are being actively explored in this context.
View Article and Find Full Text PDFSide effects and drug resistance are among the major problems of platinum-based anticancer chemotherapies. Photodynamic therapy could show improved tumor targeting ability and better anticancer effect by region-selective light irradiation. Here, we report an aggregation-induced emission (AIE)-based monofunctional Pt(ii) complex (TTC-Pt), which shows enhanced singlet oxygen production by introduction of a Pt atom to elevate the intersystem crossing (ISC) rate.
View Article and Find Full Text PDFCopper dysmetabolism is associated with various neurodegenerative disorders, making high-spatiotemporal-resolution imaging of Cu in the brain essential for understanding the underlying pathophysiological processes. Nevertheless, the current probes encounter obstacles in crossing the blood-brain barrier (BBB) and providing high-spatial-resolution in deep tissues. Herein, we present a photoacoustic probe capable of imaging Cu dynamics in the mouse brain with high-spatiotemporal-resolution.
View Article and Find Full Text PDFBackground And Aims: HCC is closely associated with inflammation and immune modulation, and combined chemotherapy with other strategies is under extensive investigation to achieve better efficacy. HCC is accompanied by zinc (Zn) deficiency. This study aims to understand how Zn could affect macrophage function and its application for HCC therapy.
View Article and Find Full Text PDFCurr Opin Chem Biol
October 2023
Zn is involved in various physiological and pathological processes in living systems. Monitoring the dynamic spatiotemporal changes of Zn levels in organelles, cells, and in vivo is of great importance for the investigation of the physiological and pathological functions of Zn. However, this task is quite challenging since Zn in living systems is present at low concentrations and undergoes rapid dynamic changes.
View Article and Find Full Text PDFMitochondrial proteases are emerging as key regulators of mitochondrial plasticity and acting as both protein quality surveillance and regulatory enzymes by performing highly regulated proteolytic reactions. However, it remains unclear whether the regulated mitochondrial proteolysis is mechanistically linked to cell identity switching. Here we report that cold-responsive mitochondrial proteolysis is a prerequisite for white-to-beige adipocyte cell fate programming during adipocyte thermogenic remodelling.
View Article and Find Full Text PDFAlternations in the brain nitric oxide (NO) homeostasis are associated with a variety of neurodegeneration diseases; therefore, high-resolution imaging of NO in the brain is essential for understanding pathophysiological processes. However, currently available NO probes are unsuitable for this purpose due to their poor ability to cross the blood-brain barrier (BBB) or to image in deep tissues with spatial resolution. Herein, we developed a photoacoustic (PA) probe with BBB crossing ability to overcome this obstacle.
View Article and Find Full Text PDFMultifunctional nanoparticles integrating accurate multi-diagnosis and efficient therapy hold great prospects in tumor theranostics. However, it is still a challenging task to develop multifunctional nanoparticles for imaging-guided effective eradication of tumors. Herein, we developed a near-infrared (NIR) organic agent Aza/I-BDP by coupling 2,6-diiodo-dipyrromethene (2,6-diiodo-BODIPY) with aza-boron-dipyrromethene (Aza-BODIPY).
View Article and Find Full Text PDFBiothiols, including glutathione (GSH), homocysteine (Hcy) and cysteine (Cys), play crucial roles in various physiological processes. Though an array of fluorescent probes have been designed to visualize biothiols in living organisms, few one-for-all imaging agents for sensing biothiols with fluorescence and photoacoustic imaging capabilities have been reported, since instructions for synchronously enabling and balancing every optical imaging efficacy are deficient. Herein, a new near-infrared thioxanthene-hemicyanine dye (Cy-DNBS) has been constructed for fluorescence and photoacoustic imaging of biothiols in vitro and in vivo.
View Article and Find Full Text PDFCationic, water-soluble benzophenothiaziniums have been recognized as effective type I photosensitizers (PSs) against hypoxic tumor cells. However, the study of the structure-property relationship of this type of PS is still worth further exploration to achieve optimized photodynamic effects and minimize the potential side effects. Herein, we synthesized a series of benzophenothiazine derivatives with minor N-alkyl alteration to study the effects on the structure-property relationships.
View Article and Find Full Text PDFNear-infrared (NIR) dyes are widely used in the field of phototheranostics. Hemicyanine dyes (HDs) have recently received tremendous attention due to their easy synthesis and excellent NIR features. However, HDs can easily form non-fluorescent aggregates and their potential for phototherapy still needs further exploration due to their poor ability to generate reactive oxygen species (ROS).
View Article and Find Full Text PDF