The initial rise of molecular oxygen (O) shortly after the Archaean-Proterozoic transition 2.5 billion years ago was more complex than the single step-change once envisioned. Sulfur mass-independent fractionation records suggest that the rise of atmospheric O was oscillatory, with multiple returns to an anoxic state until perhaps 2.
View Article and Find Full Text PDFAnthropogenic activities have fundamentally changed the chemistry of the Baltic Sea. According to results reported in this study, not even the thallium (Tl) isotope cycle is immune to these activities. In the anoxic and sulfidic ("euxinic") East Gotland Basin today, Tl and its two stable isotopes are cycled between waters and sediments as predicted based on studies of other redox-stratified basins (e.
View Article and Find Full Text PDFFluids mediate the transport of subducted slab material and play a crucial role in the generation of arc magmas. However, the source of subduction-derived fluids remains debated. The Kamchatka arc is an ideal subduction zone to identify the source of fluids because the arc magmas are comparably mafic, their source appears to be essentially free of subducted sediment-derived components, and subducted Hawaii-Emperor Seamount Chain (HESC) is thought to contribute a substantial fluid flux to the Kamchatka magmas.
View Article and Find Full Text PDFEdiacaran sediments record an unusual global carbon cycle perturbation that has been linked to widespread oceanic oxygenation, the Shuram negative C isotope excursion (NCIE). However, proxy-based estimates of global ocean redox conditions during this event have been limited largely due to proxy specificity (e.g.
View Article and Find Full Text PDFThe upper mantle, as sampled by mid-ocean ridge basalts (MORBs), exhibits significant chemical variability unrelated to mechanisms of melt extraction at ridges. We show that barium isotope variations in global MORBs vary systematically with radiogenic isotopes and trace element ratios, which reflects mixing between depleted and enriched MORB melts. In addition, modern sediments and enriched MORBs share similar Ba isotope signatures.
View Article and Find Full Text PDF