Publications by authors named "Yunbo Tang"

Brain functional connectivity has been widely explored to reveal the functional interaction dynamics between the brain regions. However, conventional connectivity measures rely on deterministic models demanding application-specific empirical analysis, while deep learning approaches focus on finding discriminative features for state classification, having limited capability to capture the interpretable connectivity characteristics. To address the challenges, this study proposes a self-supervised triplet network with depth-wise attention (TripletNet-DA) to generate the functional connectivity: 1) TripletNet-DA firstly utilizes channel-wise transformations for temporal data augmentation, where the correlated & uncorrelated sample pairs are constructed for self-supervised training, 2) Channel encoder is designed with a convolution network to extract the deep features, while similarity estimator is employed to generate the similarity pairs and the functional connectivity representations, 3) TripletNet-DA applies Triplet loss with anchor-negative similarity penalty for model training, where the similarities of uncorrelated sample pairs are minimized to enhance model's learning capability.

View Article and Find Full Text PDF

Interictal epileptiform discharges (IED) as large intermittent electrophysiological events are associated with various severe brain disorders. Automated IED detection has long been a challenging task, and mainstream methods largely focus on singling out IEDs from backgrounds from the perspective of waveform, leaving normal sharp transients/artifacts with similar waveforms almost unattended. An open issue still remains to accurately detect IED events that directly reflect the abnormalities in brain electrophysiological activities, minimizing the interference from irrelevant sharp transients with similar waveforms only.

View Article and Find Full Text PDF

How to discriminate the comorbidities in autism spectrum disorder (ASD) population has long been an intriguing and challenging issue in neuroscience and neurology practices. Taking attention deficit hyperactivity disorder (ADHD) for example, electroencephalogram (EEG) analysis has alleviated the problem caused by the task of evaluation of similar behaviors of subjects with ASD, ADHD and ASD+ADHD, which requires a very high expertise to reach any concrete conclusions. However, the performance of ASD comorbidity discrimination is still limited by two major difficulties 1) crucial EEG features regarding ASD and ASD+ADHD largely overlap, and 2) reliable data for model training are routinely insufficient.

View Article and Find Full Text PDF

Measurement of brain functional connectivity has become a dominant approach to explore the interaction dynamics between brain regions of subjects under examination. Conventional functional connectivity measures largely originate from deterministic models on empirical analysis, usually demanding application-specific settings (e.g.

View Article and Find Full Text PDF

Analysis of neuroimaging data (e.g., Magnetic Resonance Imaging, structural and functional MRI) plays an important role in monitoring brain dynamics and probing brain structures.

View Article and Find Full Text PDF

Artifact removal has been an open critical issue for decades in tasks centering on EEG analysis. Recent deep learning methods mark a leap forward from the conventional signal processing routines; however, those in general still suffer from insufficient capabilities 1) to capture potential temporal dependencies embedded in EEG and 2) to adapt to scenarios without a priori knowledge of artifacts. This study proposes an approach (namely DuoCL) to deep artifact removal with a dual-scale CNN (Convolutional Neural Network)-LSTM (Long Short-Term Memory) model, operating on the raw EEG in three phases: 1) Morphological Feature Extraction, a dual-branch CNN utilizes convolution kernels of two different scales to learn morphological features (individual sample); 2) Feature Reinforcement, the dual-scale features are then reinforced with temporal dependencies (inter-sample) captured by LSTM; and 3) EEG Reconstruction, the resulting feature vectors are finally aggregated to reconstruct the artifact-free EEG via a terminal fully connected layer.

View Article and Find Full Text PDF

Electroencephalogram (EEG) excels in portraying rapid neural dynamics at the level of milliseconds, but its spatial resolution has often been lagging behind the increasing demands in neuroscience research or subject to limitations imposed by emerging neuroengineering scenarios, especially those centering on consumer EEG devices. Current superresolution (SR) methods generally do not suffice in the reconstruction of high-resolution (HR) EEG as it remains a grand challenge to properly handle the connection relationship amongst EEG electrodes (channels) and the intensive individuality of subjects. This study proposes a deep EEG SR framework correlating brain structural and functional connectivities (Deep-EEGSR), which consists of a compact convolutional network and an auxiliary fully connected network for filter generation (FGN).

View Article and Find Full Text PDF

Recent advances in neuroscience indicate that analysis of bio-signals such as rest state electroencephalogram (EEG) and eye-tracking data can provide more reliable evaluation of children autism spectrum disorder (ASD) than traditional methods of behavior measurement relying on scales do. However, the effectiveness of the new approaches still lags behind the increasing requirement in clinical or educational practices as the "bio-marker" information carried by the bio-signal of a single-modality is likely insufficient or distorted. This study proposes an approach to joint analysis of EEG and eye-tracking for children ASD evaluation.

View Article and Find Full Text PDF