Background: Wild birds are significant vectors in global pathogen transmission, but the diversity and spatial distribution of the pathogens detected in them remain unclear. Understanding the transmission dynamics and hotspots of wild-bird-associated pathogens (WBAPs) is crucial for early disease prevention.
Methods: We compiled an up-to-date dataset encompassing all WBAPs by conducting an extensive search of publications from 1959 to 2022, mapped their diversity and global distribution, and utilized three machine learning algorithms to predict geospatial hotspots where zoonotic and emerging WBAPs were prevalent.
Environ Microbiol
October 2024
The impact of Borrelia miyamotoi on human health, facilitated by the expanding geographical distribution and increasing population of Ixodes ticks, remains obscure in the context of global climate change. We employed multiple models to evaluate the effect of global climate change on the risk of B. miyamotoi worldwide across various scenarios.
View Article and Find Full Text PDF