Conventional bone tissue engineering materials struggle to reinstate physiological bone remodeling in a diabetic context, primarily due to the compromised repolarization of proinflammatory macrophages to anti-inflammatory macrophages. Here, leveraging single-cell RNA sequencing (scRNA-seq) technology, the pivotal role of nitric oxide (NO) and reactive oxygen species (ROS) is unveiled in impeding macrophage repolarization during physiological bone remodeling amidst diabetes. Guided by scRNA-seq analysis, we engineer a multienzymatic bone tissue engineering hydrogel scaffold (MEBTHS) composed is engineered of methylpropenylated gelatin hydrogel integrated with ruthenium nanozymes, possessing both Ru and Ru components.
View Article and Find Full Text PDFCell cycle checkpoint activation promotes DNA damage repair, which is highly associated with the chemoresistance of various cancers including acute myeloid leukemia (AML). Selective cell cycle checkpoint inhibitors are strongly demanded to overcome chemoresistance, but remain unexplored. A selective nano cell cycle checkpoint inhibitor (NCCI: citric acid capped ultra-small iron oxide nanoparticles) that can catalytically inhibit the cell cycle checkpoint of AML to boost the chemotherapeutic efficacy of genotoxic agents is now reported.
View Article and Find Full Text PDFFerroptosis has recently become an attractive strategy to combat the chemoresistance of cancer cells, but the intracellular ferroptosis defense system greatly challenges the efficient ferroptosis induction. Herein, we report a ferrous metal-organic framework-based nanoagent (FMN) that inhibits the intracellular upstream glutathione synthesis and induces self-amplified ferroptosis of cancer cells, for reversing chemoresistance and boosting chemotherapy. The FMN is loaded with SLC7A11 siRNA (siSLC7A11) and chemotherapeutic doxorubicin (DOX), which shows enhanced tumor cell uptake and retention, thus ensuring the effective DOX delivery and tumor intracellular iron accumulation.
View Article and Find Full Text PDFNanozymes exhibiting antioxidant activity are beneficial for the treatment of oxidative stress-associated diseases. Ruthenium nanoparticles (RuNPs) with multiple enzyme-like activities have attracted growing attention, but the relatively low antioxidant enzyme-like activities hinder their practical biomedical applications. Here, a size regulation strategy is presented to significantly boost the antioxidant enzyme-like activities of RuNPs.
View Article and Find Full Text PDFThe structural change-mediated catalytic activity regulation plays a significant role in the biological functions of natural enzymes. However, there is virtually no artificial nanozyme reported that can achieve natural enzyme-like stringent spatiotemporal structure-based catalytic activity regulation. Here, we report a sub-nanostructural transformable gold@ceria (STGC-PEG) nanozyme that performs tunable catalytic activities via near-infrared (NIR) light-mediated sub-nanostructural transformation.
View Article and Find Full Text PDFAllergic diseases are pathological immune responses with significant morbidity, which are closely associated with allergic mediators as released by allergen-stimulated mast cells (MCs). Prophylactic stabilization of MCs is regarded as a practical approach to prevent allergic diseases. However, most of the existing small molecular MC stabilizers exhibit a narrow therapeutic time window, failing to provide long-term prevention of allergic diseases.
View Article and Find Full Text PDF