Coral polyps are composed of four tissues; however, their characteristics are largely unexplored. Here we report biological characteristics of tentacles (Te), mesenterial filaments (Me), body wall (Bo), and mouth with pharynx (MP), using comparative genomic, morpho-histological, and transcriptomic analyses of the large-polyp coral, Fimbriaphyllia ancora. A draft F.
View Article and Find Full Text PDFUnderstanding the structure and connectivity of coral populations is fundamental for developing marine conservation policies, especially in patchy environments such as archipelagos. The Nansei Islands, extending more than 1000 km in southwestern Japan, are characterized by high levels of biodiversity and endemism, supported by coral reefs, which make this region ideal for assessing genetic attributes of coral populations. In this study, we conducted population genomic analyses based on genome-wide, single-nucleotide polymorphisms (SNPs) of Acropora digitifera, a common species in the Nansei Islands.
View Article and Find Full Text PDFBackground: Scleractinian corals of the genus Montipora (Anthozoa, Cnidaria) possess some unusual biological traits, such as vertical transmission of algal symbionts; however, the genetic bases for those traits remain unknown. We performed extensive comparative genomic analyses among members of the family Acroporidae (Montipora, Acropora, and Astreopora) to explore genomic novelties that might explain unique biological traits of Montipora using improved genome assemblies and gene predictions for M. cactus, M.
View Article and Find Full Text PDFUtilization and regulation of metals from seawater by marine organisms are important physiological processes. To better understand metal regulation, we searched the crown-of-thorns starfish genome for the divalent metal transporter (DMT) gene, a membrane protein responsible for uptake of divalent cations. We found two DMT-like sequences.
View Article and Find Full Text PDFCorals of the family Acroporidae are key structural components of reefs that support the most diverse marine ecosystems. Due to increasing anthropogenic stresses, coral reefs are in decline. Along the coast of Okinawa, Japan, three different color morphs of Acropora tenuis have been recognized for decades.
View Article and Find Full Text PDFReef-building corals and photosynthetic, endosymbiotic algae of the family Symbiodiniaceae establish mutualistic relationships that are fundamental to coral biology, enabling coral reefs to support a vast diversity of marine species. Although numerous types of Symbiodiniaceae occur in coral reef environments, Acropora corals select specific types in early life stages. In order to study molecular mechanisms of coral-algal symbioses occurring in nature, we performed whole-genome transcriptomic analyses of Acropora tenuis larvae inoculated with Symbiodinium microadriaticum strains isolated from an Acropora recruit.
View Article and Find Full Text PDFThe genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success.
View Article and Find Full Text PDFElevated sea surface temperature associated with global warming is a serious threat to coral reefs. Elevated temperatures directly or indirectly alter the distribution of coral-pathogen interactions and thereby exacerbate infectious coral diseases. The pathogenic bacterium Vibrio coralliilyticus is well-known as a causative agent of infectious coral disease.
View Article and Find Full Text PDFPopulation genetics of the coral genus Pocillopora have been more intensively studied than those of any other reef-building taxon. However, recent investigations have revealed that the current morphological classification is inadequate to represent genetic lineages. In this study, we isolated and characterized novel microsatellite loci from morphological Pocillopora meandrina (Type 1) and Pocillopora acuta (Type 5).
View Article and Find Full Text PDFTo establish effective locations and sizes of potential protected areas for reef ecosystems, detailed information about source and sink relationships between populations is critical, especially in archipelagic regions. Therefore, we assessed population structure and genetic diversity of Acropora tenuis, one of the dominant stony coral species in the Pacific, using 13 microsatellite markers to investigate 298 colonies from 15 locations across the Nansei Islands in southwestern Japan. Genetic diversity was not significant among sampling locations, even in possibly peripheral locations.
View Article and Find Full Text PDFPopulation connectivity resulting from larval dispersal is essential for the maintenance or recovery of populations in marine ecosystems, including coral reefs. Studies of species diversity and genetic connectivity within species are essential for the conservation of corals and coral reef ecosystems. We analyzed mitochondrial DNA sequence types and microsatellite genotypes of the broadcast-spawning coral, Galaxea fascicularis, from four regions in the subtropical Nansei Islands in the northwestern Pacific Ocean.
View Article and Find Full Text PDFA new species of pit crab of the genus Fizesereneia Takeda & Tamura, 1980, Fizesereneia daidai sp. nov., is described and illustrated based on specimens collected from the scleractinian corals Micromussa amakusensis and Micromussa sp.
View Article and Find Full Text PDF