Publications by authors named "Yuna Shang"

We pioneered a dual-targeted trinity of antibody-peptide-drug delivery consortium to combat HER2+ tumors. This innovative approach leverages the self-assembly of peptides with high affinity to antibodies to create nanofibers for antibody encapsulation, offering a novel strategy in antibody drug delivery.

View Article and Find Full Text PDF

As an age-related disease, intervertebral disc degeneration is closely related to inflammation and aging. Inflammatory cytokines and cellular senescence collectively contribute to the degradation of intervertebral disc. Blocking this synergy reduces disc extracellular matrix damage caused by inflammation and aging.

View Article and Find Full Text PDF

Bioactive peptides play a crucial role in the field of regenerative medicine and tissue engineering. However, their application in vivo and clinic is hindered by their poor stability, short half-life, and low retention rate. Herein, we propose a novel strategy for encapsulating bioactive peptides using giant macrocycles.

View Article and Find Full Text PDF

Radiotherapy (RT) can produce a vaccine effect and remodel a tumor microenvironment (TME) by inducing immunogenic cell death (ICD) and inflammation in tumors. However, RT alone is insufficient to elicit a systemic antitumor immune response owing to limited antigen presentation, immunosuppressive microenvironment, and chronic inflammation within the tumor. Here, a novel strategy is reported for the generation of in situ peptide-based nanovaccines via enzyme-induced self-assembly (EISA) in tandem with ICD.

View Article and Find Full Text PDF

Hierarchical self-assembly based on peptides in nature is a multi-component interaction process, providing a broad platform for various bionanotechnological applications. However, the study of controlling the hierarchical structure transformation the cooperation rules of different sequences is still rarely reported. Herein, we report a novel strategy of achieving higher hierarchical structures through cooperative self-assembly of hydrophobic tripeptides with reverse sequences.

View Article and Find Full Text PDF

The shortage of donor kidneys is an important factor restricting kidney transplantation for patients with end-stage renal disease. To overcome this problem, we used decellularized kidney scaffolds and nephron progenitor cells (NPCs) as seed cells to construct bioengineered kidneys (BEKs). To reduce the effect of extracellular matrix (ECM) loss during the decellularization process on the cell growth microenvironment, we used dextrose to minimize collagen loss in decellularized kidney scaffolds.

View Article and Find Full Text PDF

Cell-targeted peptides are recommended for precision cancer treatment due to their comparable targeting properties, small molecular size, and good biocompatibility. However, unpredictable bioactivity, low penetration rate and poor stability greatly limit its efficacy. Supramolecular self-assembly based on synthetic peptide has great potential to solve related problems and achieve better therapeutic effects.

View Article and Find Full Text PDF

Autologous mosaicplasty is a common approach used to treat osteochondral defects in clinical practice. Gap integration between host and transplanted plugs requires bone tissue reservation and hyaline cartilage regeneration without uneven surface, graft necrosis and sclerosis. However, poor gap integration is a serious concern, which eventually leads to deterioration of joint function.

View Article and Find Full Text PDF

Current bone defect treatment strategies are associated with several risks and have major limitations. Therefore, it is necessary to develop an inexpensive growth factor delivery system that can be easily produced in large quantities and can promote long-term bone regeneration. An osteogenic growth peptide (OGP) is a 14 amino acid peptide with a short peptide sequence active fragment.

View Article and Find Full Text PDF

An ideal periosteum substitute should be able to mimic the periosteum microenvironment that continuously provides growth factors, recruits osteoblasts, and subsequent extracellular matrix (ECM) mineralization to accelerate bone regeneration. Here, a calcium-binding peptide-loaded poly(ε-caprolactone) (PCL) electrospun membrane modified by the shish-kebab structure that can mimic the periosteum microenvironment was developed as a bionic periosteum. The calcium-binding peptide formed by the negatively charged heptaglutamate domain (E7) in the E7-BMP-2 with calcium ion in the tricalcium phosphate sol (TCP sol) through electrostatic chelation not only extended the release cycle of E7-BMP-2 but also promoted the biomineralization of the bionic periosteum.

View Article and Find Full Text PDF

Supramolecular peptide hydrogel has shown promising potential in vaccine development largely because of its ability to function both as antigen depot and immune adjuvant. Nap-GFFY, a tetrapeptide hydrogel that has been previously reported to exhibit adjuvant effect, is inadvertently found to contain conserved peptide sequence for insulin, proinsulin, and glutamic acid decarboxylase, 3 major autoantigens for the autoimmune type 1 diabetes (T1D). At present, despite being managed clinically with insulin replacement therapy, T1D remains a major health threat with rapidly increasing incidences, especially in children and young adults, and antigen-specific immune tolerance induction has been proposed as a feasible approach to prevent or delay T1D progression at an early stage.

View Article and Find Full Text PDF

Background And Purpose: Targeting macrophage but not hepatocyte liver X receptors (LXRs) can reduce atherosclerosis without effect on hepatic lipogenesis. In this study, we encapsulated LXR ligands with D-Nap-GFFY to form a nanofibre hydrogel (D-Nap-GFFY-T0901317 or GFFY-T0901317) and determined its effect on atherosclerosis, hepatic lipogenesis and the underlying mechanisms involved.

Experimental Approach: D-Nap-GFFY-T0901317 was subcutaneously injected to proatherogenic diet-fed apoE-deficient (Apoe ) mice, followed by determination of the development of atherosclerosis, liver steatosis and the involved mechanisms, with comparison of T0901317 oral administration.

View Article and Find Full Text PDF

Atherosclerosis is a major pathogenic driver of cardiovascular diseases. Foam cell formation plays a key role in atherogenesis, which is affected by lipid disorder and inflammation. Therefore, inhibition of foam cell formation is a therapeutic approach for atherosclerosis treatment.

View Article and Find Full Text PDF

Atherosclerosis is vascular disease of chronic inflammation and lipid disorder, which is a major cause of coronary heart disease. Foam cell formation is key progress during the atherosclerosis development. Insulin-like growth factor (IGF)-1 is a growth hormone that plays a crucial role in growth, metabolism, and homeostasis.

View Article and Find Full Text PDF

The utilization of nanotechnology to deliver vaccines and modulate immunity has shown great potential in cancer therapy. Peptide-based supramolecular hydrogels as novel vaccine adjuvants have been found to effectively improve the immune response and tumor curative effect. In this study, we designed a set of reduction-responsive self-assembled peptide precursors (Fbp-GFFY(E, S, or K)-ss-ERGD), which can be reduced by glutathione (GSH) into Fbp-GFFY(E, S or K)-SH for forming of hydrogel with different surface properties (E-gel, S-gel, and K-gel, respectively).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC-EVs) have been recognized as a promising cell-free therapy for acute kidney injury (AKI), which avoids safety concerns associated with direct cell engraftment. However, low stability and retention of MSC-EVs have limited their therapeutic efficacy. RGD (Arg-Gly-Asp) peptide binds strongly to integrins, which have been identified on the surface of MSC-EV membranes; yet RGD has not been applied to EV scaffolds to enhance and prolong bioavailability.

View Article and Find Full Text PDF

Sarcopenia is a common disease in older people due to aging, and it can also occur in midlife because of diseases including cancer. Sarcopenia, characterized by rapid loss of muscle mass and accelerated loss of function, can lead to adverse outcomes such as frailty, falls, and even mortality. The development of pharmacological and therapeutic approaches to treat sarcopenia remains challenging.

View Article and Find Full Text PDF

Purpose: By providing a stem cell microenvironment with particular bioactive constituents in vivo, synthetic biomaterials have been progressively successful in stem cell-based tissue regeneration by enhancing the engraftment and survival of transplanted cells. Designs with bioactive motifs to influence cell behavior and with D-form amino acids to modulate scaffold stability may be critical for the development and optimization of self-assembling biomimetic hydrogel scaffolds for stem cell therapy.

Materials And Methods: In this study, we linked naphthalene (Nap) covalently to a short D-form peptide (Nap-FFG) and the C domain of insulin-like growth factor-1 (IGF-1C) as a functional hydrogel-based scaffolds, and we hypothesized that this hydrogel could enhance the therapeutic efficiency of human placenta-derived mesenchymal stem cells (hP-MSCs) in a murine acute kidney injury (AKI) model.

View Article and Find Full Text PDF

The substitution of a single amino acid with its enantiomer may lead to variations in self-assembled nanostructures and biological functions. In this study, we reported three novel heterochiral peptide hydrogels, Nap-GFFY (gel-1), Nap-GFFY (gel-2) and Nap-GFFY (gel-3), from Nap-GFFY the substitution of a single amino acid with its enantiomer. We found that the resulting hydrogels possessed diverse self-assembly behaviors and adjuvant activities.

View Article and Find Full Text PDF

We have developed a co-assembled nanosystem based on fenofibrate and ketoprofen by tactfully utilizing their simultaneous benzophenone interaction, which greatly enhances the bioavailability of fenofibrate and plays a role in the dual-targeted treatment of NAFLD by reducing hepatic lipid accumulation and inflammatory responses.

View Article and Find Full Text PDF

: Atherosclerosis is an underlying cause of coronary heart disease. Foam cell, a hallmark of atherosclerosis, is prominently derived from monocyte-differentiated macrophage, and vascular smooth muscle cells (VSMCs) through unlimitedly phagocytizing oxidized low-density lipoprotein (oxLDL). Therefore, the inhibition of monocyte adhesion to endothelium and uptake of oxLDL might be a breakthrough point for retarding atherosclerosis.

View Article and Find Full Text PDF

: Nanomaterials capable of specifically interacting with proteins are very important for protein storage and vaccine delivery. Supramolecular hydrogels based on peptides have emerged as promising vaccine adjuvants because of their good compatibility, ease of antigen incorporation and display, and efficiency in activating immune responses. : We synthesized a self-assembling peptide (Fbp-GFFYK(γE)-NH, ) serving as a supramolecular protein chaperone for protein antigen delivery.

View Article and Find Full Text PDF

Supramolecular hydrogels of self-assembling peptides and thermogels are very promising for biomedical applications. However, there were no thermogels of self-assembling peptides. In this study, we reported on a novel and versatile strategy to prepare thermogels of self-assembling peptides by enzyme-instructed peptide folding and self-assembly.

View Article and Find Full Text PDF

Bioactive peptides derived from proteins generally need to be folded into secondary structures to activate downstream signaling pathways. However, synthetic peptides typically form random-coils, thus losing their bioactivities. Here, we show that by introducing a self-assembling peptide motif and using different preparation pathways, a peptide from insulin-like growth factor-I (IGF-1) can be folded into an α-helix and β-sheet.

View Article and Find Full Text PDF

Stem cell therapy has obtained extensive consensus to be an effective method for post myocardial infarction (MI) intervention. Induced pluripotent stem (iPS) cells, which are able to differentiate into multiple cell types, have the potential to generate cardiovascular lineage cells for myocardial repair after ischemic damage, but their poor retention rate significantly hinders the therapeutic efficacy. In the present study, we developed a supramolecular hydrogel which is formed by the self-assembly of folic acid (FA)-modified peptide via a biocompatible method (glutathione reduction) and suitable for cell encapsulation and transplantation.

View Article and Find Full Text PDF