Publications by authors named "YunZeng Zou"

Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.

View Article and Find Full Text PDF

Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis.

View Article and Find Full Text PDF

Transcription factors collaborate with epigenetic regulatory factors to orchestrate cardiac differentiation for heart development, but the underlying mechanism is not fully understood. Here, we report that GATA-6 induces cardiac differentiation but peroxisome proliferator-activated receptor α (PPARα) reverses GATA-6-induced cardiac differentiation, possibly because GATA-6/PPARα recruits the polycomb protein complex containing EZH2/Ring1b/BMI1 to the promoter of the cardiac-specific α-myosin heavy chain (α-MHC) gene and suppresses α-MHC expression, which ultimately inhibits cardiac differentiation. Furthermore, Ring1b ubiquitylates PPARα and GATA-6.

View Article and Find Full Text PDF

Sustained myocardial hypertrophy or left ventricular hypertrophy (LVH) triggered by pressure overload is strongly linked to adverse cardiovascular outcomes. Here, we investigated the clinical relationship between serum HSP90α (an isoform of HSP90) levels and LVH in patients with hypertension or aortic stenosis (AS) and explored underlying mechanisms in pressure overload mouse model. We built a pressure overload mouse model via transverse aortic constriction (TAC).

View Article and Find Full Text PDF

Background: Cardiovascular disease (CVD) is one of the leading global causes of death, and serum iron (SI) levels may be associated with the mortality of CVD. However, there is still a knowledge gap regarding the relationship between SI and mortality in the CVD population.

Methods: An analysis was conducted utilizing data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018.

View Article and Find Full Text PDF

Introduction: Oxysterol binding protein (OSBP)-related protein 5 (ORP5) mainly functions as a lipid transfer protein at membrane contact sites (MCS). ORP5 facilitates cell proliferation through the activation of mTORC1 signaling. While the pro-hypertrophic effects of mTORC1 are well-documented, the specific role of ORP5 in the context of pathological cardiac hypertrophy remains inadequately understood.

View Article and Find Full Text PDF

Backgrounds: Bruton tyrosine kinase (BTK), which is highly expressed in immune cells, plays a critical role in regulating the function of macrophages. A growing body of evidence has demonstrated that the accumulation of macrophages in cardiac tissue after myocardial infarction (MI) significantly affects wound healing and ventricular remodeling during the early phase of repair after MI. However, the role of BTK in cardiac repair post-MI, especially in macrophage-mediated repair, remains unclear.

View Article and Find Full Text PDF

Objective: Myocardial ischemia-reperfusion (I/R) injury is associated with a significant reduction in the mitochondrial membrane potential (MMP, ΔΨm). Fluorescence-based assays are effective for labelling active mitochondria in living cells; their application in heart tissue, however, represents a challenge because of a low yield of viable cardiomyocytes after cardiac perfusion. This study aimed to examine a novel method for detecting the changes in the MMP of mouse heart tissue following I/R injury.

View Article and Find Full Text PDF
Article Synopsis
  • EphrinB2 is crucial for promoting the formation of blood and lymph vessels during embryo development and plays a significant role in cardiac lymphangiogenesis after a heart attack (myocardial infarction, MI).
  • The study found that EphrinB2 helps prevent heart remodeling and dysfunction post-MI by activating pathways involved in lymphangiogenesis, with its absence leading to worsening heart conditions.
  • Mechanistically, EphrinB2 enhances the proliferation and migration of lymphatic endothelial cells, boosts the activity of a specific transcription factor (ISL1), and its effects are diminished when the VEGFR3 pathway is inhibited, highlighting its importance in cardiac recovery after MI.
View Article and Find Full Text PDF

Venous graft decay (VGD) occurs in coronary artery bypass grafting (CABG), and ischemia-reperfusion oxidative stress injury during the operation is involved in VGD. To explore the cellular phenotypic changes during this process, a stable oxidative stress model of human saphenous vein endothelial cells (HSVECs) is constructed. Through proteomics and cell experiments, it is found that the expression of BCL2L13 is upregulated during oxidative stress of HSVECs, and BCL2L13 regulated mitophagy through receptor-mediated interaction with LC3 and plays a role in cell protection.

View Article and Find Full Text PDF

Cardiomyopathy is a prevalent cardiovascular disease that affects individuals of all ages and can lead to life-threatening heart failure. Despite its variety in types, each with distinct characteristics and causes, our understanding of cardiomyopathy at a systematic biology level remains incomplete. Mass spectrometry-based techniques have emerged as powerful tools, providing a comprehensive view of the molecular landscape and aiding in the discovery of biomarkers and elucidation of mechanisms.

View Article and Find Full Text PDF

Macrophage-derived foam cells play a crucial role in plaque formation and rupture during the progression of atherosclerosis. Traditional studies have often overlooked the heterogeneity of foam cells, focusing instead on populations of cells. To address this, we have developed time-resolved, single-cell metabolomics and lipidomics approaches to explore the heterogeneity of macrophages during foam cell formation.

View Article and Find Full Text PDF

Vectors incorporating the human H1 (hH1) promoter are being applied for RNA interference (RNAi) experiments and genome editing. Although extensive studies have been conducted on the hH1 promoter, our understanding of the mouse H1 promoter remains limited. In this study, we predicted the 163 bp mouse H1 (mH1) promoter and 84 bp mouse H1 core (mH1 core) promoter through global alignment and detected its RNA polymerase II (Pol II) and III activities through the expression of the EGFP and the abundance of artificial sequence, which were generally slightly weaker than those of the hH1 promoter.

View Article and Find Full Text PDF

Background: Secreted frizzled-related protein 2 (sFRP2) is involved in various cardiovascular diseases. However, its relevance in left ventricular (LV) remodeling in patients with hypertension (HTN) is obscure.

Methods: In this study, 196 patients with HTN were included, 59 with echocardiographic LV remodeling.

View Article and Find Full Text PDF

RNA-binding proteins play multiple roles in several biological processes. However, the roles of RBM15-an important RNA-binding protein and a significant regulator of RNA methylation-in cardiovascular diseases remain elusive. This study aimed to investigate the biological function of RBM15 and its fundamental mechanisms in myocardial infarction (MI).

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory arterial disease, in which abnormal lipid metabolism and foam cell formation play key roles. Histamine is a vital biogenic amine catalyzed by histidine decarboxylase (HDC) from L-histidine. Histamine H1 receptor (HR) antagonist is a commonly encountered anti-allergic agent in the clinic.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiac remodeling after a heart attack (myocardial infarction) can lead to heart failure if not treated, and the role of mitochondria in this process is not fully understood.
  • Our study focused on Samm50, a critical mitochondrial component, finding that its levels decreased in mice with heart attacks and in lab-grown heart cells under oxygen deprivation.
  • By manipulating Samm50 levels, we discovered it can protect against heart cell damage and fibrosis, with Shmt2 being a key player in this protective mechanism, suggesting that targeting the Samm50/Shmt2 pathway could help treat heart injuries from low oxygen levels.
View Article and Find Full Text PDF

Cold stress prompts an increased prevalence of cardiovascular morbidity yet the underneath machinery remains unclear. Oxidative stress and autophagy appear to contribute to cold stress-induced cardiac anomalies. Our present study evaluated the effect of heavy metal antioxidant metallothionein on cold stress (4 °C)-induced in cardiac remodeling and contractile anomalies and cell signaling involved including regulation of autophagy and mitophagy.

View Article and Find Full Text PDF

A comprehensive view of the role of NLRP3/caspase-1/GSDMD-mediated pyroptosis in pressure overload cardiac hypertrophy is presented in this study. Furthermore, mitigation of NLRP3 deficiency-induced pyroptosis confers cardioprotection against pressure overload through activation of TAK1, whereas this salutary effect is abolished by inhibition of TAK1 activity, highlighting a previously unrecognized reciprocally regulatory role of NLRP3-TAK1 governing inflammation-induced cell death and hypertrophic growth. Translationally, this study advocates strategies based on inflammation-induced cell death might be exploited therapeutically in other inflammatory and mechanical overload disorders, such as myocardial infarction and mitral regurgitation.

View Article and Find Full Text PDF

This article highlights the importance of the structure and function of cardiac lymphatics in cardiovascular diseases and the therapeutic potential of cardiac lymphangiogenesis. Specifically, we explore the innate lymphangiogenic response to damaged cardiac tissue or cardiac injury, derive key findings from regenerative models demonstrating how robust lymphangiogenic responses can be supported to improve cardiac function, and introduce an approach to imaging the structure and function of cardiac lymphatics.

View Article and Find Full Text PDF

While the protective effects of n-3 polyunsaturated fatty acids (PUFAs) on cardiac ischemia-reperfusion (IR) injury have been previously reported, limited data are available regarding how these fatty acids affect membrane receptors and their downstream signaling following IR injury. We aimed to identify potential receptors activated by n-3 PUFAs in IR hearts to understand the regulatory mechanisms of these receptors. We used mice, which naturally have elevated levels of n-3 PUFAs, and C57BL/6J mice as a control group to create a myocardial IR injury model through Langendorff perfusion.

View Article and Find Full Text PDF

Doxorubicin is a wildly used effective anticancer agent. However, doxorubicin use is also related to cardiotoxic side effect in some patients. Mitochondrial damage has been shown to be one of the pathogeneses of doxorubicin-induced myocardial injury.

View Article and Find Full Text PDF

Adenosine kinase (ADK) plays the major role in cardiac adenosine metabolism, so that inhibition of ADK increases myocardial adenosine levels. While the cardioprotective actions of extracellular adenosine against ischemia/reperfusion (I/R) are well-established, the role of cellular adenosine in protection against I/R remains unknown. Here we investigated the role of cellular adenosine in epigenetic regulation on cardiomyocyte gene expression, glucose metabolism and tolerance to I/R.

View Article and Find Full Text PDF

Pyroptosis is a form of pro-inflammatory cell death that can be mediated by gasdermin D (GSDMD) activation induced by inflammatory caspases such as caspase-1. Emerging evidence suggests that targeting GSDMD activation or pyroptosis may facilitate the reduction of vascular inflammation and atherosclerotic lesion development. The current study investigated the therapeutic effects of inhibition of GSDMD activation by the novel GSDMD inhibitor N-Benzyloxycarbonyl-Leu-Leu-Ser-Asp(OMe)-fluoromethylketone (Z-LLSD-FMK), the specific caspase-1 inhibitor N-Benzyloxycarbonyl-Tyr-Val-Ala-Asp(OMe)-fluoromethylketone (Z-YVAD-FMK), and a combination of both on atherosclerosis in ApoE mice fed a western diet at 5 weeks of age, and further determined the efficacy of these polypeptide inhibitors in bone marrow-derived macrophages (BMDMs).

View Article and Find Full Text PDF