Domain walls are quasi-one-dimensional topological defects in ferroic materials, which can harbor emergent functionalities. In the case of ferroelectric domain wall (FEDW) devices, an exciting frontier has emerged: memristor-based information storage and processing approaches. Memristor solid-state FEDW devices presented thus far, however predominantly utilize a complex network of domain walls to achieve the desired regulation of density and charge state.
View Article and Find Full Text PDFHigh-dielectric-constant elastomers have broad applications in wearable electronics, which can be achieved by the elastification of relaxor ferroelectric polymers. However, the introduction of soft long chains, with their high mobility under strong electric fields, leads to high dielectric loss. Given the relatively low modulus of relaxor ferroelectric polymers, elastification can be realized by introducing short-chain crosslinkers.
View Article and Find Full Text PDFIn fabricating ferroelectric tunnel junction (FTJ) devices, it is essential to employ low-resistance metals as electrodes interfacing with two-dimensional (2D) ferroelectric materials. For FTJs with a top contact configuration, two interfaces for charge transport are present, namely the vertical interface between the metal electrode and the 2D ferroelectric material, and the lateral interface between the electrode and the central scattering region. These interfaces significantly influence the tunneling electroresistance (TER) of FTJs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Flexible ferroelectric films with high polarization hold great promise for energy storage and electrocaloric (EC) refrigeration. Herein, we fabricate a lead-free Mn-modified 0.75 Bi(MgTi)O-0.
View Article and Find Full Text PDFDispersion relations govern wave behaviors, and tailoring them is a grand challenge in wave manipulation. We demonstrate the inverse design of phononic dispersion using nonlocal interactions on one-dimensional spring-mass chains. For both single-band and double-band cases, we can achieve any valid dispersion curves with analytical precision.
View Article and Find Full Text PDFDuck Tembusu virus (DTMUV), an emerging pathogenic flavivirus, causes markedly decreased egg production in laying duck and neurological dysfunction and death in ducklings. Vaccination is currently the most effective means for prevention and control of DTMUV. In previous study, we have found that methyltransferase (MTase) defective DTMUV is attenuated and induces a higher innate immunity.
View Article and Find Full Text PDFThe two-dimensional (2D) layered semiconductor α-InSe has aroused great interest in atomic-scale ferroelectric transistors, artificial synapses, and nonvolatile memory devices due to its distinguished 2D ferroelectric properties. We have synthesized α-InSe nanosheets with rare in-plane ferroelectric stripe domains at room temperature on mica substrates using a reverse flow chemical vapor deposition (RFCVD) method and optimized growth parameters. This stripe domain contrast is found to be strongly correlated to the stacking of layers, and the interrelated out-of-plane (OOP) and in-plane (IP) polarization can be manipulated by mapping the artificial domain structure.
View Article and Find Full Text PDFBackground: Immune checkpoint inhibitors (ICIs) therapy targeting programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) shows promising clinical benefits. However, the relatively low response rate highlights the need to develop an alternative strategy to target PD-1/PD-L1 immune checkpoint. Our study focuses on the role and mechanism of annexin A1 (ANXA1)-derived peptide A11 degrading PD-L1 and the effect of A11 on tumor immune evasion in multiple cancers.
View Article and Find Full Text PDFUnlike most flaviviruses transmitted by arthropods, Tembusu virus (TMUV) is still active during winter and causes outbreaks in some areas, indicating vector-independent spread of the virus. Gastrointestinal transmission might be one of the possible routes of vector-free transmission, which also means that the virus has to interact with more intestinal bacteria. Here, we found evidence that TMUV indeed can transmit through the digestive tract.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Flexible ferroelectric capacitors with high energy density and storage efficiency are highly desirable in the next generation of flexible electronic devices. To develop high-performance ferroelectric capacitors, a conventional approach is chemical modification. Here, a novel approach of interlayer coupling is proposed to achieve high energy storage performance in BiMgTiO-BaTiO/BiMgTiO (BMT-BTO/BMT) multilayer ferroelectric films fabricated on flexible mica substrates via a sol-gel coating method.
View Article and Find Full Text PDFDuck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that mainly causes a decrease in egg production in infected waterfowl. Similar to other members of the family, it can proliferate in most mammalian cells and may also pose a potential threat to nonavian animals. In previous studies, we found that DTMUV infection can upregulate suppressor of cytokine signaling 1 (SOCS1) to inhibit type I interferon (IFN) production and promote virus replication, but the specific mechanism is unclear.
View Article and Find Full Text PDFDuck hepatitis A virus type 1 (DHAV-1) is one of the main pathogens responsible for death in ducklings. Autophagy is a catabolic process that maintains cellular homeostasis, and the PI3KC3 protein plays an important role in the initiation of autophagy. DHAV-1 infection induces autophagy in duck embryo fibroblasts (DEFs) but the molecular mechanism between it and autophagy has not been reported.
View Article and Find Full Text PDFThe nomenclature of duck viral hepatitis (DVH) was historically not a problem. However, 14 hepatotropic viruses among 10 different genera are associated with the same disease name, DVH. Therefore, the disease name increasingly lacks clarity and may no longer fit the scientific description of the disease.
View Article and Find Full Text PDFFlavivirus RNA cap-methylation plays an important role in viral infection, proliferation, and escape from innate immunity. The methyltransferase (MTase) of the flavivirus NS5 protein catalyzes viral RNA methylation. The E218 amino acid of the NS5 protein MTase domain is one of the active sites of flavivirus methyltransferase.
View Article and Find Full Text PDFNitrosamine impurities are being detected in various pharmaceutical products recently. However, no analytical method is provided for biopharmaceuticals. In present work, a salting-out liquid-liquid extraction (SALLE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for quantification of thirteen nitrosamine contaminations in antibody drugs.
View Article and Find Full Text PDFRetinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are cytosolic pattern recognition receptors that initiate innate antiviral immunity. Recent reports found that duck RLRs significantly restrict duck plague virus (DPV) infection. However, the molecular mechanism by which DPV evades immune responses is unknown.
View Article and Find Full Text PDFOur previous studies revealed that duck Tembusu virus (DTMUV) NS2A inhibited IFNβ signaling pathway by competitively binding to STING with TBK1, leading to reducing the phosphorylation of TBK1. Herein, we found that the 114-143 aa region of NS2A is critical for its interaction with STING and suppression of STING-mediated IFNβ signaling. We further identified the amino acids at positions L129, N130, L139, R140 and F143 of NS2A critical for NS2A-STING interaction.
View Article and Find Full Text PDFDuck plague virus (DPV) can cause high morbidity and mortality in many waterfowl species within the order Anseriformes. The DPV genome contains 78 open reading frames (ORFs), among which the LORF2, LORF3, LORF4, LORF5, and SORF3 genes are unique genes of avian herpesvirus. In this study, to investigate the role of this unique LORF5 gene in DPV proliferation, we generated a recombinant virus that lacks the LORF5 gene by a two-step red recombination system, which cloned the DPV Chinese virulent strain (DPV CHv) genome into a bacterial artificial chromosome (DPV CHv-BAC); the proliferation law of LORF5-deleted mutant virus on DEF cells and the effect of LORF5 gene on the life cycle stages of DPV compared with the parent strain were tested.
View Article and Find Full Text PDFThe duck hepatitis A virus 1 (DHAV-1) 2C protein was predicted to be a superfamily III helicase member and includes nucleotide binding (NTB) and putative RNA helicase activity motifs. To study whether DHAV-1 2C protein has NTB activity, we expressed DHAV-1 2C protein with maltose binding protein (MBP) to solve its poor solubility in a prokaryotic expression system. We showed that the DHAV-1 2C protein has nucleoside triphosphatase (NTPase) activity by measuring the released phosphate.
View Article and Find Full Text PDFDuck hepatitis A virus (DHAV), which mainly infects 1- to 4-week-old ducklings, has a fatality rate of 95% and poses a huge economic threat to the duck industry. However, the mechanism by which DHAV-1 regulates the immune response of host cells is rarely reported. This study examined whether DHAV-1 contains a viral protein that can regulate the innate immunity of host cells and its specific regulatory mechanism, further exploring the mechanism by which DHAV-1 resists the host immune response.
View Article and Find Full Text PDFThe 5' end of the flavivirus genome contains a type 1 cap structure formed by sequential N-7 and 2'-O methylations by viral methyltransferase (MTase). Cap methylation of flavivirus genome is an essential structural modification to ensure the normal proliferation of the virus. Tembusu virus (TMUV) (genus ) is a causative agent of duck egg drop syndrome and has zoonotic potential.
View Article and Find Full Text PDFDuck Tembusu virus (DTMUV) is an emerging mosquito-borne flavivirus that has caused acute egg-drop syndrome in egg-laying ducks. DTMUV nonstructural protein 1 (NS1) contains three potential predicted N-linked glycosylation sites at residues 130, 175 and 207. In this study, we found that mutations at these sites affect the molecular weight of recombinant NS1, as assessed by western blot assays; however, the mutations do not affect their subcellular localization in the cytoplasm, as assessed by colocalization assays.
View Article and Find Full Text PDFAvian Tembusu virus (TMUV) is a novel flavivirus causing severe egg drop and fatal encephalitis in avian in Asia. In the present study, we screened the structural and functional requirements of TMUV capsid protein (CP) for viral morphogenesis using reverse genetics methods in combination with replicon packaging assays. TMUV-CP showed dramatic functional and structural flexibility, and even though 44 residues were removed from the N-terminus, it was still capable of packaging replicon RNA; in addition, 33 residues were deleted from the C-terminus (containing nearly the entire α4-helix), and infectious particles were still produced, although α4-α4' is supposedly vital for CP dimerization and nucleocapsid formation.
View Article and Find Full Text PDF