Publications by authors named "YunSheng Xu"

Diabetic kidney disease (DKD), one of the most prevalent microvascular complications of diabetes, arises from dysregulated glucose and lipid metabolism induced by hyperglycemia, resulting in the deterioration of renal cells such as podocytes and tubular epithelial cells. Programmed cell death (PCD), comprising apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis, represents a spectrum of cell demise processes intricately governed by genetic mechanisms in vivo. Under physiological conditions, PCD facilitates the turnover of cellular populations and serves as a protective mechanism to eliminate impaired podocytes or tubular epithelial cells, thereby preserving renal tissue homeostasis amidst hyperglycemic stress.

View Article and Find Full Text PDF

Psoriasis is a chronic inflammatory dermatosis driven by excessive activation of the immune system. Recent studies have demonstrated the therapeutic potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) to psoriasis because of their immunomodulation functions. Yet, the outcome of MSC-EVs alone is still unsatisfactory and the underlying mechanisms are also unclear.

View Article and Find Full Text PDF

Context: Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus. Chinese patent medicines (CPMs) are widely used in clinical practice to treat DPN.

Objective: This study aims to summarize the latest evidence on the harms and benefits of CPMs as adjunctive therapy for DPN.

View Article and Find Full Text PDF

Melanoma either intrinsically possesses resistance or rapidly acquires resistance to anti-tumor therapy, which often leads to local recurrence or distant metastasis after resection. In this study, we found histone 3 lysine 27 (H3K27) demethylated by an inhibitor of histone methyltransferase EZH2 could epigenetically reverse the resistance to chemo-drug paclitaxel (PTX), or enhance the efficacy of immune checkpoint inhibitor anti-TIGIT via downregulating TIGIT ligand CD155. Next, to address the complexity in the combination of multiple bioactive molecules with distinct therapeutic properties, we developed a polysaccharides-based organohydrogel (OHG) configured with a heterogenous network.

View Article and Find Full Text PDF

Diabetic cardiomyopathy(DCM) is a chronic complication of diabetes mellitus that leads to cardiac damage in the later stages of the disease, and its pathogenesis is complex, involving metabolic disorders brought about by a variety of aberrant alterations such as endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis, defects in cardiomyocyte Ca~(2+) transporter, and myocardial fibrosis. Currently, there is a lack of specific diagnosis and treatment in the clinic. Autophagy is a highly conserved scavenging mechanism that removes proteins, damaged organelles or foreign contaminants and converts them into energy and amino acids to maintain the stability of the intracellular environment.

View Article and Find Full Text PDF

Purpose: We aimed to report the latest and largest pooled analyses and evidence updates to assess the effectiveness of telemedicine interventions for self-management (DSM) in patients with type 2 diabetes mellitus (T2DM).

Methods: A systematic literature search was conducted using PubMed, Cochrane, Embase, and Web of Science in December 2023. We included randomized controlled trials (RCTs) of adults (≥18 years of age) diagnosed with T2DM where the intervention was the application of telemedicine.

View Article and Find Full Text PDF

Accurate and effective detection is essential to against bacterial infection and contamination. Novel biosensors, which detect bacterial bioproducts and convert them into measurable signals, are attracting attention. We developed an artificial intelligence (AI)-assisted smartphone-based colorimetric biosensor for the visualized, rapid, sensitive detection of pathogenic bacteria by measuring the bacteria secreted hyaluronidase (HAase).

View Article and Find Full Text PDF

Ionic conductive elastomers (ICEs) exhibit a compelling combination of ionic conductivity and elastic properties, rendering them excellent candidates for stretchable electronics, particularly in applications like sensing devices. Despite their appeal, a significant challenge lies in the reprocessing of ICEs without compromising their performance. To address this issue, we propose a strategy that leverages covalent adaptable networks (CANs) for the preparation of ICEs.

View Article and Find Full Text PDF

Following the publication of the above article, a concerned reader drew to the Editor's attention that certain of the Transwell cell migration and invasion assay data featured in Figs. 5C and 6C were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had already been published elsewhere prior to the submission of this paper to , or were submitted for consideration for publication at around the same time. In view of the fact that certain of these data had already apparently been published prior to the submission of this article for publication, the Editor of Oncology Reports has decided that this paper should be retracted from the Journal.

View Article and Find Full Text PDF
Article Synopsis
  • As people's quality of life gets better, more and more are getting diabetes and its related health problems.
  • Current treatments for diabetes aren't very effective, so new ways to prevent and treat it are really needed.
  • Autophagy, which is a process that helps cells stay healthy, might be able to help treat diabetes by using natural products that can improve how cells function.
View Article and Find Full Text PDF

Obesity, non-alcoholic fatty liver disease (NAFLD), and atherosclerotic cardiovascular diseases are common and growing public health concerns. Previous epidemiological studies unfolded the robust correlation between obesity, NAFLD, and atherosclerotic cardiovascular diseases. Obesity is a well-known risk factor for NAFLD, and both of them can markedly increase the odds of atherosclerotic cardiovascular diseases.

View Article and Find Full Text PDF

Despite extensive research on biological therapies for atopic dermatitis (AD), recent clinical trials of the Janus kinase inhibitor 1, abrocitinib, have provided more definitive evidence regarding its efficacy and safety in treating AD. To conduct a living systematic review and meta-analysis to evaluate the efficacy and safety of abrocitinib in adolescents and adults with moderate-to-severe AD. The databases of PubMed, Embase, Cochrane Library and clinical trial registries were searched from inception of the databases to July 11, 2023.

View Article and Find Full Text PDF

Despite the fact that immunotherapy has significantly improved the prognosis of melanoma patients, the non-response rate of monoimmunotherapy is considerably high due to insufficient tumor immunogenicity. Therefore, it is necessary to develop alternative methods of combination therapy with enhanced antitumor efficiency and less systemic toxicity. In this study, we reported a cancer cell membrane-coated zeolitic imidazole framework-8 (ZIF-8) encapsulating pyroptosis-inducer oxaliplatin (OXA) and immunomodulator imiquimod (R837) for chemoimmunotherapy.

View Article and Find Full Text PDF

Tropomyosin receptor kinases (TRKs), the superfamily of transmembrane receptor tyrosine kinases, have recently become an attractive method for precision anticancer therapies since the approval of Larotrectinib and Entrectinib by FDA. Herein, we reported the discovery of a series of novel indazolylaminoquinazoline and indazolylaminoindazole as TRK inhibitors. The representative compound 30f exhibited good inhibitory activity against TRK, TRK and TRK with IC values of 0.

View Article and Find Full Text PDF

Objective: Postmenopausal osteoporosis (PMOP) is a common systemic metabolic bone disorder that is owing to the reduced estrogen secretion and imbalance of bone absorption and bone formation in postmenopausal women. Ferroptosis has been identified as a novel modulatory mechanism of osteoporosis. Nevertheless, the particular modulatory mechanism between ferroptosis and PMOP is still unclear.

View Article and Find Full Text PDF

Stress-induced hair loss is a prevalent health concern, with mechanisms that remain unclear, and effective treatment options are not yet available. In this study, we investigated whether stress-induced hair loss was related to an imbalanced immune microenvironment. Screening the skin-infiltrated immune cells in a stressed mouse model, we discovered a significant increase in macrophages upon stress induction.

View Article and Find Full Text PDF

The management of myocardial ischemia/reperfusion (I/R) damage in the context of reperfusion treatment remains a significant hurdle in the field of cardiovascular disorders. The injured lesions exhibit distinctive features, including abnormal accumulation of necrotic cells and subsequent inflammatory response, which further exacerbates the impairment of cardiac function. Here, we report genetically engineered hybrid nanovesicles (hNVs), which contain cell-derived nanovesicles overexpressing high-affinity SIRPα variants (SαV-NVs), exosomes (EXOs) derived from human mesenchymal stem cells (MSCs), and platelet-derived nanovesicles (PLT-NVs), to facilitate the necrotic cell clearance and inhibit the inflammatory responses.

View Article and Find Full Text PDF

Radiotherapy is an important treatment modality for patients with esophageal cancer; however, the response to radiation varies among different tumor subpopulations due to tumor heterogeneity. Cancer cells that survive radiotherapy (i.e.

View Article and Find Full Text PDF

Objectives: To investigate factors that may influence humoral immunity post-vaccination with a COVID-19-inactivated vaccine (SC2IV).

Methods: A total of 1596 healthy individuals from the Seventh Affiliated Hospital, Sun Yat-sen University (1217) and Shenzhen Baotian Hospital (379) were enrolled in this study among which 694 and 218 participants were vaccinated with two-dose SC2IV, respectively. Physical examination indices were recorded.

View Article and Find Full Text PDF

CoSb-based filled skutterudites (SKDs) are among the most promising materials for power generation. However, the poor interfacial stability and mechanical strength severely limit their practical application when joined with Cu electrodes. In this study, we propose multiphase Ti-based alloy barrier layers for CoSb-based thermoelectric junctions to prevent the continuous brittle TiCoSb phase formation.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is highly malignant and prone to recurrence and metastasis. Patients with TNBC have limited therapeutic options, often resulting in poor prognosis. Some new treatments for TNBC have been considered in the past decade, such as immunotherapy, photothermal therapy (PTT), and ferroptosis therapy, that allow the rapid and minimally invasive ablation of cancer.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are lipid-bilayer membrane-enclosed vesicles that are secreted by all cell types. Natural EVs contain biological information such as proteins, nucleic acids, and lipids from their parent cells. Therefore, EVs have been extensively studied as diagnostic biomarkers and therapeutic tools under normal and pathological conditions.

View Article and Find Full Text PDF

Many implantable drug delivery systems (IDDS) have been developed for long-term, pulsatile drug release. However, they are often limited by bulky size, complex electronic components, unpredictable drug delivery, as well as the need for battery replacement and consequent replacement surgery. Here, we develop an implantable magnetically-actuated capsule (IMAC) and its portable magnetic actuator (MA) for on-demand and robust drug delivery in a tether-free and battery-free manner.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: A combination of 6 different Chinese herbs known as Erchen decoction (ECD) has been traditionally used to treat digestive tract diseases and found to have a protective effect against nonalcoholic fatty liver disease (NAFLD). Despite its efficacy in treating NAFLD, the precise molecular mechanism by which Erchen Decoction regulated iron ion metabolism to prevent disease progression remained poorly understood.

Aim Of Study: Our study attempted to confirm the specific mechanism of ECD in reducing lipid and iron in NAFLD from the perspective of regulating the expression of Caveolin-1 (Cav-1).

View Article and Find Full Text PDF