The adsorbed nanobubbles inside the nanochannels can cause fluid transport blockages, which will obviously degrade the nanodevice performance and reduce the lifetime. However, due to small-scale effects, the removal of nanobubbles is a huge challenge at the nanoscale. Herein, molecular dynamics simulations are carried out to study the effect of the electrostatic field on underwater nitrogen nanobubbles confined in nanochannels.
View Article and Find Full Text PDFObesity has shown a global epidemic trend. The high-lipid state caused by obesity can maintain the heart in a prolonged low-grade inflammatory state and cause ventricular remodeling, leading to a series of pathologies, such as hypertrophy, fibrosis, and apoptosis, which eventually develop into obese cardiomyopathy. Therefore, prolonged low-grade inflammation plays a crucial role in the progression of obese cardiomyopathy, making inflammation regulation an essential strategy for treating this disease.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
October 2024
Background: Sarcopenia, a group of muscle-related disorders, leads to the gradual decline and weakening of skeletal muscle over time. Recognizing the pivotal role of gastrointestinal conditions in maintaining metabolic homeostasis within skeletal muscle, we hypothesize that the effectiveness of the myogenic programme is influenced by the levels of gastrointestinal hormones in the bloodstream, and this connection is associated with the onset of sarcopenia.
Methods: We first categorized 145 individuals from the Emergency Room of Taipei Veterans General Hospital into sarcopenia and non-sarcopenia groups, following the criteria established by the Asian Working Group for Sarcopenia.
The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs.
View Article and Find Full Text PDFControlling active transport of water through membrane channels is essential for advanced nanofluidic devices. Despite advancements in water nanopump design using techniques like short-range invasion and subnanometer-level control, challenges remain facilely and remotely realizing massive waters active transport. Herein, using molecular dynamic simulations, we propose an ultrahigh-flux nanopump, powered by frequency-specific terahertz stimulation, capable of unidirectionally transporting massive water through asymmetric-wettability membrane channels at room temperature without any external pressure.
View Article and Find Full Text PDFLow-pressure catalytic membranes allow efficient rejection of particulates and simultaneously removing organics pollutant in water, but the accumulation of dissolved organic matters (DOM) on membrane surface, which cover the catalytic sites and cause membrane fouling, challenges their stable operation in practical wastewater treatment. Here we propose a ferric salt-based coagulation/co-catalytic membrane integrated system that can effectively mitigate the detrimental effects of DOM. Ferric salt (Fe) serving both as a DOM coagulant to lower the membrane fouling and as a co-catalyst with the membrane-embedded MoS nanosheets to drive perxymonosulfate (PMS) activation and pollutant degradation.
View Article and Find Full Text PDFSelf-assembled bio-hybrids with biogenic ferrous sulfide nanoparticles (bio-FeS) on the cell surface are attractive for reduction of toxic heavy metals due to higher activity than bare bacteria, but they still suffer from slow synthesis and regeneration of bio-FeS and bacterial activity decay for removal of high-concentration heavy metals. A further optimization of the bio-FeS synthesis process and properties is of vital importance to address this challenge. Herein, we present a simple pH-regulation strategy to enhance bio-FeS synthesis and elucidated the underlying regulatory mechanisms.
View Article and Find Full Text PDFHistol Histopathol
December 2022
Lung cancer is a high-risk tumor and is a main cause of death worldwide. The tumor aggressiveness and degree of malignancy depend not only on the tumor itself, but also on the microenvironment. The inflammatory microenvironment is one of the key factors in promoting the progression of lung cancer.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFIn this work, a thin-film composite forward osmosis (FO) membrane was fabricated on polyethersulfone substrate by interfacial polymerization with naturally-available humic acid (HA) as a stable membrane additive in the support layer. Compared with the pristine polyethersulfone substrate, the incorporation of HA significantly altered the cross-section structure, increased average pore size and porosity of the substrate, leading to a thinner polyamide layer, further increasing the water flux (permeability). Specifically, the FO membrane showed a higher water flux (~20 L m h) with the introduction of HA than the membrane synthesized without HA (~15 L m h) in the FO mode with 2 M NaCl as draw solution.
View Article and Find Full Text PDFA non-radical reaction between peroxysulfates and phenolic compounds, as important structural moieties of natural organic matters, has been reported recently, implying new opportunities for environmental remediation without need for catalyst or energy input. However, this approach seems to be ineffective for halogenated aromatic compounds, an important disinfection by-products (DBPs). Here, we shed light on the interactions between peroxymonosulfate (PMS) and chlorophenols and the influential factors.
View Article and Find Full Text PDFDiffuse astrocytoma (including glioblastoma) is morbid with a worse prognosis than other types of glioma. Therefore, we sought to build a progression-associated score to improve malignancy and prognostic predictions for astrocytoma. The astrocytoma progression (AP) score was constructed through bioinformatics analyses of the training cohort (TCGA RNA-seq) and included 18 genes representing distinct aspects of regulation during astrocytoma progression.
View Article and Find Full Text PDFMembrane fouling remains a major challenge for applying membrane technology to water treatment and, therefore, new tools to recognize the key foulants are essential for characterizing and evaluating the membrane fouling process. In this work, fluorescence excitation emission matrix coupled with parallel factor framework-clustering analysis was used to investigate the membrane fouling during the filtration process of humic acid (HA) and bovine serum albumin (BSA) solution by polyvinylidene fluoride membrane. Interestingly, the interaction between BSA and HA in the membrane fouling process was observed, and was further confirmed by infrared microspectroscopy and two-dimensional correlation spectroscopic analysis.
View Article and Find Full Text PDFHerein we reported a series of 14 novel derivatives based on the -cyclobutylaminoethoxyisoxazole scaffold. binding studies of these compounds demonstrated their low nanomolar to subnanomolar potencies as σ1 receptor ligands, with moderate to excellent selectivity over the σ2 receptor as represented by compounds 17-30. The majority of the derivatives scored high (>4.
View Article and Find Full Text PDFPrevious studies demonstrated that Nav1.5 splice variants, including Nav1.5a and Nav1.
View Article and Find Full Text PDFVoltage-gated sodium channels serve an essential role in the initiation and propagation of action potentials for central neurons. Previous studies have demonstrated that two novel variants of Nav1.5, designated Nav1.
View Article and Find Full Text PDFChannels (Austin)
November 2017
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases.
View Article and Find Full Text PDFIt has previously been demonstrated that there are various voltage gated sodium channel (Nav) 1.5 splice variants expressed in brain tissue. A total of nine Nav1.
View Article and Find Full Text PDFRecent studies focus on promoting neurite outgrowth to remodel the central nervous network after brain injury. Currently, however, there are few drugs treating brain diseases in the clinic by enhancing neurite outgrowth. In this study, we established an NGF-induced PC12 differentiation model to screen novel compounds that have the potential to induce neuronal differentiation, and further characterized 4,10-Aromadendranediol (ARDD) isolated from the dried twigs of the Baccharis gaudichaudiana plant, which exhibited the capability of promoting neurite outgrowth in neuronal cells in vitro.
View Article and Find Full Text PDFAim: To discover neuroprotective compounds and to characterize the discovered active compound YQ138 as a novel GSK-3β inhibitor.
Methods: Primary rat cerebellar granule cells (CGCs) were treated with glutamate, and cell viability was analyzed with MTT assay, which was used as in vitro model for screening neuroprotective compounds. Active compound was further tested in OGD- or serum deprivation-induced neuronal injury models.
Aim: To explore the treatment efficacy of microsurgery for secondary epilepsy from hippocampal lesions.
Material And Methods: The clinical data, pathological findings, surgical methods and surgical outcomes of 56 patients with secondary epilepsy from hippocampal lesions were retrospectively analyzed.
Results: Postoperative pathological examinations confirmed that 27 patients had gliomas, 17 patients had vascular malformations and 12 patients had hippocampal sclerosis.
Lead compound 7 has neuroprotective effects, and it was discovered by screening a small synthetic natural product-like (NPL) library. Based on the lead, a series of tricyclic diterpene derivatives was designed and synthesized, and their neuroprotective effects were further evaluated against glutamate-, oxygen and glucose deprivation (OGD)- and nutrient deprivation-induced neuronal injury using cell-based assays. To our delight, most of these synthetic compounds exhibited increased neuroprotective effects and blood-brain barrier (BBB) permeability without cellular toxicity.
View Article and Find Full Text PDFPituitary adenomas are the third most common primary intracranial tumor; however, those with postoperative metastases are very rare and are classically considered as pituitary carcinomas. The field of neurosurgery has struggled with diagnosing and treating these unusual lesions. In this report, we retrospectively analyze the clinical features, imaging findings, pathological characteristics and prognosis of one patient with non-hormone-secreting pituitary adenoma who had multiple intracranial and spinal metastases and underwent four surgeries in a 16-year follow-up period.
View Article and Find Full Text PDF