Publications by authors named "Yun-bo Shi"

Background: Thyroid hormone (T3) has an inhibitory effect on tissue/organ regeneration. It is still elusive how T3 regulates this process. It is well established that the developmental effects of T3 are primarily mediated through transcriptional regulation by thyroid hormone receptors (TRs).

View Article and Find Full Text PDF

Intestinal structure is drastically changed from fetal to adult form during postembryonic development, a period around birth in mammals. This process is regulated by thyroid hormone (T3) via its receptors, T3 receptor (TR) α and TRβ during anuran metamorphosis. Here, we used intestinal remodeling during Xenopus tropicalis metamorphosis, which serves as a model for human postembryonic development, to identify TR-bound genes and determine the relative contribution to target gene binding by TRα and TRβ.

View Article and Find Full Text PDF

Thyroid hormones and their receptors (TRs) play critical roles during vertebrate development. One of the most dramatic developmental processes regulated by thyroid hormones is frog metamorphosis, which mimics the postembryonic (perinatal) period in mammals. Here, we review some of the findings on the developmental functions of thyroid hormones and TRs as well as their associated mechanisms of action obtained from this model system.

View Article and Find Full Text PDF

Background: The adult intestinal epithelium is a complex, self-renewing tissue composed of specialized cell types with diverse functions. Intestinal stem cells (ISCs) located at the bottom of crypts, where they divide to either self-renew, or move to the transit amplifying zone to divide and differentiate into absorptive and secretory cells as they move along the crypt-villus axis. Enteroendocrine cells (EECs), one type of secretory cells, are the most abundant hormone-producing cells in mammals and involved in the control of energy homeostasis.

View Article and Find Full Text PDF

The intestine is critical for not only processing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation.

View Article and Find Full Text PDF

Intestinal development takes places in two phases, the initial formation of neonatal (mammals)/larval (anurans) intestine and its subsequent maturation into the adult form. This maturation occurs during postembryonic development when plasma thyroid hormone (T3) level peaks. In anurans such as the highly related Xenopus laevis and Xenopus tropicalis, the larval/tadpole intestine is drastically remodeled from a simple tubular structure to a complex, multi-folded adult organ during T3-dependent metamorphosis.

View Article and Find Full Text PDF

Targeted genome editing is a powerful tool in reverse genetic studies of gene function in many aspects of biological and pathological processes. The CRISPR/Cas system or engineered endonucleases such as ZFNs and TALENs are the most widely used genome editing tools that are introduced into cells or fertilized eggs to generate double-strand DNA breaks within the targeted region, triggering cellular DNA repair through either homologous recombination or non-homologous end joining (NHEJ). DNA repair through the NHEJ mechanism is usually error-prone, leading to point mutations or indels (insertions and deletions) within the targeted region.

View Article and Find Full Text PDF

The vertebrate adult intestinal epithelium has a high self-renewal rate driven by intestinal stem cells (ISCs) in the crypts, which play central roles in maintaining intestinal integrity and homeostasis. However, the underlying mechanisms remain elusive. Here we showed that protein arginine methyltransferase 1 (PRMT1), a major arginine methyltransferase that can also function as a transcription co-activator, was highly expressed in the proliferating cells of adult mouse intestinal crypts.

View Article and Find Full Text PDF

Thyroid hormone (T3) plays critical roles in organ metabolism and development in vertebrates. Anuran metamorphosis is perhaps the most dramatic and best studied developmental process controlled by T3. Many changes in different organs/tissues during anuran metamorphosis resemble the maturation/remodeling of the corresponding organs/tissues during mammalian postembryonic development.

View Article and Find Full Text PDF

Anuran metamorphosis is perhaps the most drastic developmental change regulated by thyroid hormone (T3) in vertebrate. It mimics the postembryonic development in mammals when many organs/tissues mature into adult forms and plasma T3 level peaks. T3 functions by regulating target gene transcription through T3 receptors (TRs), which can recruit corepressor or coactivator complexes to target genes in the absence or presence of T3, respectively.

View Article and Find Full Text PDF

Amphibian metamorphosis resembles mammalian postembryonic development, a period around birth when many organs mature into their adult forms and when plasma thyroid hormone (T3) concentration peaks. T3 plays a causative role for amphibian metamorphosis. This and its independence from maternal influence make metamorphosis of amphibians, particularly anurans such as pseudo-tetraploid and its highly related diploid species , an excellent model to investigate how T3 regulates adult organ development.

View Article and Find Full Text PDF

Targeted genome editing is a powerful tool for studying gene function in almost every aspect of biological and pathological processes. The most widely used genome editing approach is to introduce engineered endonucleases or CRISPR/Cas system into cells or fertilized eggs to generate double-strand DNA breaks within the targeted region, leading to DNA repair through homologous recombination or non-homologous end joining (NHEJ). DNA repair through NHEJ mechanism is an error-prone process that often results in point mutations or stretches of indels (insertions and deletions) within the targeted region.

View Article and Find Full Text PDF

Thyroid hormone (T3) regulates vertebrate organ development, growth, and metabolism through the T3 receptor (TR). Due to maternal influence in mammals, it has been difficult to study if and how T3 regulates liver development. Liver remodeling during anuran metamorphosis resembles liver maturation in mammals and is controlled by T3.

View Article and Find Full Text PDF

Hypothalamic neurons regulate body homeostasis by sensing and integrating changes in the levels of key hormones and primary nutrients (amino acids, glucose, and lipids). However, the molecular mechanisms that enable hypothalamic neurons to detect primary nutrients remain elusive. Here, we identified l-type amino acid transporter 1 (LAT1) in hypothalamic leptin receptor-expressing (LepR-expressing) neurons as being important for systemic energy and bone homeostasis.

View Article and Find Full Text PDF

Background: Animal regeneration is the natural process of replacing or restoring damaged or missing cells, tissues, organs, and even entire body to full function. Studies in mammals have revealed that many organs lose regenerative ability soon after birth when thyroid hormone (T3) level is high. This suggests that T3 play an important role in organ regeneration.

View Article and Find Full Text PDF

The intestine is critical for not only processing and resorbing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation.

View Article and Find Full Text PDF

Thyroid hormone (triiodothyronine [T3]) is essential for development and organ metabolism in all vertebrates. T3 has both genomic and nongenomic effects on target cells. While much has been learnt on its genomic effects via T3 receptors (TRs) in vertebrate development, mostly through TR-knockout and TR-knockin studies, little is known about the effects of T3 on gene expression in animals in the absence of TR.

View Article and Find Full Text PDF

Thyroid hormone (T3) is essential for normal development and metabolism, especially during postembryonic development, a period around birth in mammals when plasma T3 levels reach their peak. T3 functions through two T3 receptors, TRα and TRβ. However, little is known about the tissue-specific functions of TRs during postembryonic development because of maternal influence and difficulty in manipulation of mammalian models.

View Article and Find Full Text PDF

Thyroid hormone (T3) is important for adult organ function and vertebrate development, particularly during the postembryonic period when many organs develop/mature into their adult forms. Amphibian metamorphosis is totally dependent on T3 and can be easily manipulated, thus offering a unique opportunity for studying how T3 controls postembryonic development in vertebrates. Numerous early studies have demonstrated that T3 affects frog metamorphosis through T3 receptor (TR)-mediated regulation of T3 response genes, where TR forms a heterodimer with RXR (9-cis retinoic acid receptor) and binds to T3 response elements (TREs) in T3 response genes to regulate their expression.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) is a major risk factor for the development and progression of hepatocellular carcinoma (HCC). It has been reported that viral infection can interfere with the expression of cellular microRNA (miRNA) to affect oncogenesis. In this study, we showed that miR-520c-3p was upregulated in liver tumor specimens, and we revealed that HBV infection enhanced the expression of miR-520c-3p through the interaction of viral protein HBV X protein (HBx) with transcription factor CREB1.

View Article and Find Full Text PDF

In multicellular organisms, development is based in part on the integration of communication systems. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in orchestrating body morphogenesis. In all vertebrates, the hypothalamic-pituitary-thyroid axis controls thyroid hormone production and release, whereas the hypothalamic-pituitary-adrenal/interrenal axis regulates the production and release of corticosteroids.

View Article and Find Full Text PDF

Thyroid hormone (T3) receptors (TRs) mediate T3 effects on vertebrate development. We have studied metamorphosis as a model for postembryonic human development and demonstrated that TRα knockout induces precocious hind limb development. To reveal the molecular pathways regulated by TRα during limb development, we performed chromatin immunoprecipitation- and RNA-sequencing on the hind limb of premetamorphic wild type and TRα knockout tadpoles, and identified over 700 TR-bound genes upregulated by T3 treatment in wild type but not TRα knockout tadpoles.

View Article and Find Full Text PDF

Thyroid hormone (T3) regulates adult intestine development through T3 receptors (TRs). It is difficult to study TR function during postembryonic intestinal maturation in mammals due to maternal influence. We chose intestinal remodeling during Xenopus tropicalis metamorphosis as a model to study TR function in adult organ development.

View Article and Find Full Text PDF

Thyroid hormone (T3) affects many diverse physiological processes such as metabolism, organogenesis, and growth. The two highly related frog species, diploid Xenopus tropicalis and pseudo tetraploid Xenopus laevis, have been used as models for analyzing the effects of T3 during vertebrate development. T3 regulates T3-inducible gene transcription through T3 receptor (TR)-binding to T3-response elements (TREs).

View Article and Find Full Text PDF