Publications by authors named "Yun-Yueh Lu"

COVID-19 pandemic caused by SARS-CoV-2 constitutes a global public health crisis with enormous economic consequences. Monoclonal antibodies against SARS-CoV-2 can provide an important treatment option to fight COVID-19, especially for the most vulnerable populations. In this work, potent antibodies binding to SARS-CoV-2 Spike protein were identified from COVID-19 convalescent patients.

View Article and Find Full Text PDF

Chronically infecting pathogens avoid clearance by the innate immune system by promoting premature transition from an initial pro-inflammatory response toward an anti-inflammatory tissue-repair response. STAT3, a central regulator of inflammation, controls this transition and thus is targeted by numerous chronic pathogens. Here, we show that BepD, an effector of the chronic bacterial pathogen Bartonella henselae targeted to infected host cells, establishes an exceptional pathway for canonical STAT3 activation, thereby impairing secretion of pro-inflammatory TNF-α and stimulating secretion of anti-inflammatory IL-10.

View Article and Find Full Text PDF

Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells.

View Article and Find Full Text PDF

The Gram-negative, zoonotic pathogen Bartonella henselae is the aetiological agent of cat scratch disease, bacillary angiomatosis and peliosis hepatis in humans. Two pathogenicity factors of B. henselae - each displaying multiple functions in host cell interaction - have been characterized in greater detail: the trimeric autotransporter Bartonella adhesin A (BadA) and the type IV secretion system VirB/D4 (VirB/D4 T4SS).

View Article and Find Full Text PDF

Background: The intergenic region (IR) of ambisense RNA segments from animal- and plant-infecting (-)RNA viruses functions as a bidirectional transcription terminator. The IR sequence of the Tomato spotted wilt virus (TSWV) ambisense S RNA contains stretches that are highly rich in A-residues and U-residues and is predicted to fold into a stable hairpin structure. The presence of this hairpin structure sequence in the 3' untranslated region (UTR) of TSWV mRNAs implies a possible role in translation.

View Article and Find Full Text PDF

Overexpression of DNA 5'-cytosine-methyltransferases (DNMT), which are enzymes that methylate the cytosine residue of CpGs, is involved in many cancers. However, the mechanism of DNMT overexpression remains unclear. Here, we showed that wild-type p53 negatively regulated DNMT1 expression by forming a complex with specificity protein 1 (Sp1) protein and chromatin modifiers on the DNMT1 promoter.

View Article and Find Full Text PDF

Melon yellow spot virus (MYSV), a tentative member of the genus Tospovirus, is considered a distinct serotype due to the lack of a serological relationship with other tospoviruses in its nucleocapsid protein (NP). Recently, a virus isolate collected from diseased watermelon in central Taiwan (MYSV-TW) was found to react with a rabbit antiserum (RAs) prepared against the NP of Watermelon silver mottle virus (WSMoV), and a monoclonal antibody (MAb) prepared against the common epitope of the NSs proteins of WSMoV-serogroup tospoviruses, but not with the WSMoV NP-specific MAb, in both enzyme-linked immunosorbent assay (ELISA) and western blotting. In this investigation, both RAs and MAb against MYSV-TW NP were produced.

View Article and Find Full Text PDF