Publications by authors named "Yun-Wen You"

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber.

View Article and Find Full Text PDF

Gas cluster ion beam (GCIB) is a promising technique for preserving molecular structures during ion sputtering and successfully profiling biological and soft materials. However, although GCIB yields lower damage accumulation compared with C60+ and monoatomic ion beams, the inevitable alteration of the chemical structure can introduce artifacts into the resulting depth profile. To enhance the ionization yield and further mask damage, a low-energy O2+ (200-500 V) cosputter can be applied.

View Article and Find Full Text PDF

Background: Circulating tumor cells (CTCs) comprise the high metastatic potential population of cancer cells in the blood circulation of humans; they have become the established biomarkers for cancer diagnosis, individualized cancer therapy, and cancer development. Technologies for the isolation and recovery of CTCs can be powerful cancer diagnostic tools for liquid biopsies, allowing the identification of malignancies and guiding cancer treatments for precision medicine.

Methods: We have used an electrospinning process to prepare poly(lactic-co-glycolic acid) (PLGA) nanofibrous arrays in random or aligned orientations on glass slips.

View Article and Find Full Text PDF

With its low-cost fabrication and ease of modification, paper-based analytical devices have developed rapidly in recent years. Microarrays allow automatic analysis of multiple samples or multiple reactions with minimal sample consumption. While cellulose paper is generally used, its high backgrounds in spectrometry outside of the visible range has limited its application to be mostly colorimetric analysis.

View Article and Find Full Text PDF

In this investigation, we employed a novel one-step electrospinning process to fabricate poly(ethylene oxide) (PEO)/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) core/shell nanofiber structures with improved water resistance and good electrochemical properties and characterized them using scanning electron microscopy, transmission electron microscopy, and time-of-flight secondary ion mass spectrometry imaging. We then integrated a biotinylated poly-(l-lysine-graft-ethylene glycol) (PLL-g-PEG-biotin) coating with three-dimensional (3D) PEDOT-based nanofiber devices for dynamic control over the capture/release performance of rare circulating tumor cells (CTCs) on-chip. The detailed capture/release behavior of the circulating tumor cells was studied using an organic bioelectronic platform comprising PEO/PEDOT:PSS nanofiber mats with 3 wt % (3-glycidyloxypropyl)trimethoxysilane as an additive.

View Article and Find Full Text PDF

Over the last decade, cluster ion beams have displayed their capability to analyze organic materials and biological specimens. Compared with atomic ion beams, cluster ion beams non-linearly enhance the sputter yield, suppress damage accumulation and generate high mass fragments during sputtering. These properties allow successful Secondary Ion Mass Spectroscopy (SIMS) analysis of soft materials beyond the static limit.

View Article and Find Full Text PDF

Cell adhesion is the basis of individual cell survival, division and motility. Hence, understanding the effects that the surface properties have on cell adhesion, proliferation and morphology are crucial. In particular, surface charge/potential has been identified as an important factor that affects cell behavior.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) are good nonviral carriers because of their ease of synthesis and conjugation in biochemistry, and self-assembled monolayers (SAMs) provide a tunable system to change their interfacial properties. Using homogeneously mixed carboxylic acid and amine functional groups, a series of surface potentials and isoelectric points (IEPs) could be obtained and allow systematic study of the effect of surface potential. In this work, the result of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that binary-SAM modified AuNPs have high biocompatibility with HEK293T cells.

View Article and Find Full Text PDF

Extracellular matrix (ECM) proteins, such as fibronectin, laminin, and collagen IV, play important roles in many cellular behaviors, including cell adhesion and spreading. Understanding their adsorption behavior on surfaces with different natures is helpful for studying the cellular responses to environments. By tailoring the chemical composition in binary acidic (anionic) and basic (cationic) functionalized self-assembled monolayer (SAM)-modified gold substrates, variable surface potentials can be generated.

View Article and Find Full Text PDF
Article Synopsis
  • A low-kV scanning transmission electron microscopy (STEM) method was developed to improve imaging of cell structures by using a homemade specimen holder and a multiangle solid-state detector, allowing for better contrast of light elements and reduced radiation damage.
  • This technique involved capturing two-dimensional images of a 1-μm-thick cell section, using a range of projection angles, and reconstructing a three-dimensional (3D) volume structure with specific algorithms and plugins in ImageJ, which are freely available.
  • While the limited tilting angle affects resolution, the reconstruction allows for detailed visualization of cellular uptake of gold nanoparticles, providing insight into their final positions within cells.
View Article and Find Full Text PDF

In the past decade, buckminsterfullerene (C(60))-based ion beams have been utilized in surface analysis instruments to expand their application to profiling organic materials. Although it had excellent performance for many organic and biological materials, its drawbacks, including carbon deposition, carbon penetration, continuous decay of the sputtering rate, and a rough sputtered surface, hindered its application. Cosputtering with C(60)(+) and auxiliary Ar(+) simultaneously and sample rotation during sputtering were proposed as methods to reduce the above-mentioned phenomena.

View Article and Find Full Text PDF

Gold is known to have good biocompatibility because of its inert activity and the surface property can be easily tailored with self-assembled monolayers (SAMs). In previous works, gold surfaces were tailored with homogeneously mixed amine and carboxylic acid functional groups to generate surfaces with a series of isoelectronic points (IEPs). In other words, by tailoring the chemical composition in binary SAMs, different surface potentials can be obtained under controlled pH environments.

View Article and Find Full Text PDF

To explore C(60)(+) sputtering beyond low-damage depth profiling of organic materials, X-ray photoelectron spectrometry (XPS) and secondary ion mass spectrometry (SIMS) were used to examine metallic surfaces during and after C(60)(+) sputtering. During C(60)(+) sputtering, XPS spectra indicated that the degrees of carbon deposition were different for different metallic surfaces. Moreover, for some metals (e.

View Article and Find Full Text PDF

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C(60)(+) primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the C(60)(+) primary ion have been based on static-SIMS, which makes depth profiling complicated.

View Article and Find Full Text PDF

Dynamic secondary ion mass spectrometry (D-SIMS) analysis of poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) (PMMA) was conducted using a quadrupole mass analyzer with various combinations of continuous C(60)(+) and Ar(+) ion sputtering. Individually, the Ar(+) beam failed to generate fragments above m/z 200, and the C(60)(+) beam generated molecular fragments of m/z ~1000. By combining the two beams, the auxiliary Ar(+) beam, which is proposed to suppress carbon deposition due to C(60)(+) bombardment and/or remove graphitized polymer, the sputtering range of the C(60)(+) beam is extended.

View Article and Find Full Text PDF

It has been shown that the application of self-assembled monolayers (SAMs) to semiconductors or metals may enhance the efficiency of optoelectronic devices by changing the surface properties and tuning the work functions at their interfaces. In this work, binary SAMs with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were used to modify the surface of Si to fine-tune the work function of Si to an arbitrary energy level. As an electron-donor, amine SAM (from APTMS) produced outward dipole moments, which led to a lower work function.

View Article and Find Full Text PDF

Self-assembled monolayer (SAM)-modified nano-materials are a new technology to deliver drug molecules. While the majority of these depend on covalently immobilizing molecules on the surface, it is proposed that electrostatic interactions may be used to deliver drugs. By tuning the surface potential of solid substrates with SAMs, drug molecules could be either absorbed on or desorbed from substrates through the difference in electrostatic interactions around the selected iso-electric point (IEP).

View Article and Find Full Text PDF

This study demonstrated that the work function (Φ) of Au substrates can be fine-tuned by using series ratios of binary self-assembled monolayers (SAMs). By using pure amine- and carboxylic acid-bearing alkanethiol SAM on gold substrates, Φ of Au changed from 5.10 to 5.

View Article and Find Full Text PDF

Cluster ion sputtering has been proven to be an effective technique for depth profiling of organic materials. In particular, C(60)(+) ion beams are widely used to profile soft matter. The limitation of carbon deposition associated with C(60)(+) sputtering can be alleviated by concurrently using a low-energy Ar(+) beam.

View Article and Find Full Text PDF

The nanostructure of the light emissive layer (EL) of polymer light emitting diodes (PLEDs) was investigated using force modulation microscopy (FMM) and scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) excited with focused Bi(3)(2+) primary beam. Three-dimensional nanostructures were reconstructed from high resolution ToF-SIMS images acquired with different C(60)(+) sputtering times. The observed nanostructure is related to the efficiency of the PLED.

View Article and Find Full Text PDF

By using 10 kV C(60)(+) and 200 V Ar(+) ion co-sputtering, a crater was created on the light-emitting layer of phosphorescent polymer light-emitting diodes, which consisted of a poly(9-vinyl carbazole) (PVK) host doped with a 24 wt % iridium(III)bis[(4,6-difluorophenyl)pyridinato-N,C(2)] (FIrpic) guest. A force modulation microscope (FMM) was used to analyze the nanostructure at the flat slope near the edge of the crater. The three-dimensional distribution of PVK and FIrpic was determined based on the difference in their mechanical properties from FMM.

View Article and Find Full Text PDF

Solution processable fullerene and copolymer bulk heterojunctions are widely used as the active layers of solar cells. In this work, scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to examine the distribution of [6,6]phenyl-C61-butyric acid methyl ester (PCBM) and regio-regular poly(3-hexylthiophene) (rrP3HT) that forms the bulk heterojunction. The planar phase separation of P3HT:PCBM is observed by ToF-SIMS imaging.

View Article and Find Full Text PDF