The development of surface modification techniques has brought about a major paradigm shift in the clinical applications of bone tissue regeneration. Biofabrication strategies enable the creation of scaffolds with specific microstructural environments and biological components. Lithium (Li) has been reported to exhibit anti-inflammatory, osteogenic, and chondrogenic properties by promoting several intracellular signaling pathways.
View Article and Find Full Text PDFBone defects are commonly found in the elderly and athletic population due to systemic diseases such as osteoporosis and trauma. Bone scaffolds have since been developed to enhance bone regeneration by acting as a biological extracellular scaffold for cells. The main advantage of a bone scaffold lies in its ability to provide various degrees of structural support and growth factors for cellular activities.
View Article and Find Full Text PDFSpecific interactions between Src homology 2 (SH2) domain-containing proteins and the phosphotyrosine-containing counterparts play significant role in cellular protein tyrosine kinase (PTK) signaling pathways. The SH2 domain inhibitors could potentially serve as drug candidates in treating human diseases. Here we have incorporated a novel phosphotyrosine mimetic, which is an unusual amino acid carrying a cyclosaligenyl (cycloSal) phosphodiester moiety, into dipeptides to investigate the inhibitory effect on SH2 domain-containing proteins.
View Article and Find Full Text PDF